Normalized defining polynomial
\( x^{20} - x^{19} - 3 x^{18} + 7 x^{17} + 5 x^{16} - 33 x^{15} + 13 x^{14} + 119 x^{13} - 171 x^{12} - 305 x^{11} + 989 x^{10} - 1220 x^{9} - 2736 x^{8} + 7616 x^{7} + 3328 x^{6} - 33792 x^{5} + 20480 x^{4} + 114688 x^{3} - 196608 x^{2} - 262144 x + 1048576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3206128490667995866421572265625=3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(165=3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{165}(1,·)$, $\chi_{165}(134,·)$, $\chi_{165}(136,·)$, $\chi_{165}(74,·)$, $\chi_{165}(76,·)$, $\chi_{165}(14,·)$, $\chi_{165}(16,·)$, $\chi_{165}(149,·)$, $\chi_{165}(151,·)$, $\chi_{165}(89,·)$, $\chi_{165}(91,·)$, $\chi_{165}(29,·)$, $\chi_{165}(31,·)$, $\chi_{165}(164,·)$, $\chi_{165}(104,·)$, $\chi_{165}(106,·)$, $\chi_{165}(46,·)$, $\chi_{165}(119,·)$, $\chi_{165}(59,·)$, $\chi_{165}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3956} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{305}{989}$, $\frac{1}{15824} a^{12} - \frac{1}{15824} a^{11} + \frac{1}{16} a^{10} + \frac{3}{16} a^{9} - \frac{7}{16} a^{8} - \frac{5}{16} a^{7} + \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{7}{16} a^{4} - \frac{5}{16} a^{3} + \frac{1}{16} a^{2} - \frac{305}{3956} a - \frac{171}{989}$, $\frac{1}{63296} a^{13} - \frac{1}{63296} a^{12} - \frac{3}{63296} a^{11} - \frac{13}{64} a^{10} + \frac{9}{64} a^{9} - \frac{21}{64} a^{8} - \frac{15}{64} a^{7} - \frac{29}{64} a^{6} + \frac{25}{64} a^{5} + \frac{27}{64} a^{4} + \frac{1}{64} a^{3} - \frac{305}{15824} a^{2} - \frac{171}{3956} a + \frac{119}{989}$, $\frac{1}{253184} a^{14} - \frac{1}{253184} a^{13} - \frac{3}{253184} a^{12} + \frac{7}{253184} a^{11} + \frac{73}{256} a^{10} - \frac{21}{256} a^{9} - \frac{15}{256} a^{8} + \frac{99}{256} a^{7} - \frac{39}{256} a^{6} - \frac{101}{256} a^{5} + \frac{1}{256} a^{4} - \frac{305}{63296} a^{3} - \frac{171}{15824} a^{2} + \frac{119}{3956} a + \frac{13}{989}$, $\frac{1}{1012736} a^{15} - \frac{1}{1012736} a^{14} - \frac{3}{1012736} a^{13} + \frac{7}{1012736} a^{12} + \frac{5}{1012736} a^{11} + \frac{235}{1024} a^{10} + \frac{497}{1024} a^{9} - \frac{413}{1024} a^{8} + \frac{473}{1024} a^{7} + \frac{155}{1024} a^{6} + \frac{1}{1024} a^{5} - \frac{305}{253184} a^{4} - \frac{171}{63296} a^{3} + \frac{119}{15824} a^{2} + \frac{13}{3956} a - \frac{33}{989}$, $\frac{1}{4050944} a^{16} - \frac{1}{4050944} a^{15} - \frac{3}{4050944} a^{14} + \frac{7}{4050944} a^{13} + \frac{5}{4050944} a^{12} - \frac{33}{4050944} a^{11} + \frac{497}{4096} a^{10} - \frac{1437}{4096} a^{9} - \frac{551}{4096} a^{8} - \frac{1893}{4096} a^{7} + \frac{1}{4096} a^{6} - \frac{305}{1012736} a^{5} - \frac{171}{253184} a^{4} + \frac{119}{63296} a^{3} + \frac{13}{15824} a^{2} - \frac{33}{3956} a + \frac{5}{989}$, $\frac{1}{16203776} a^{17} - \frac{1}{16203776} a^{16} - \frac{3}{16203776} a^{15} + \frac{7}{16203776} a^{14} + \frac{5}{16203776} a^{13} - \frac{33}{16203776} a^{12} + \frac{13}{16203776} a^{11} - \frac{5533}{16384} a^{10} + \frac{3545}{16384} a^{9} + \frac{2203}{16384} a^{8} + \frac{1}{16384} a^{7} - \frac{305}{4050944} a^{6} - \frac{171}{1012736} a^{5} + \frac{119}{253184} a^{4} + \frac{13}{63296} a^{3} - \frac{33}{15824} a^{2} + \frac{5}{3956} a + \frac{7}{989}$, $\frac{1}{64815104} a^{18} - \frac{1}{64815104} a^{17} - \frac{3}{64815104} a^{16} + \frac{7}{64815104} a^{15} + \frac{5}{64815104} a^{14} - \frac{33}{64815104} a^{13} + \frac{13}{64815104} a^{12} + \frac{119}{64815104} a^{11} - \frac{29223}{65536} a^{10} - \frac{14181}{65536} a^{9} + \frac{1}{65536} a^{8} - \frac{305}{16203776} a^{7} - \frac{171}{4050944} a^{6} + \frac{119}{1012736} a^{5} + \frac{13}{253184} a^{4} - \frac{33}{63296} a^{3} + \frac{5}{15824} a^{2} + \frac{7}{3956} a - \frac{3}{989}$, $\frac{1}{259260416} a^{19} - \frac{1}{259260416} a^{18} - \frac{3}{259260416} a^{17} + \frac{7}{259260416} a^{16} + \frac{5}{259260416} a^{15} - \frac{33}{259260416} a^{14} + \frac{13}{259260416} a^{13} + \frac{119}{259260416} a^{12} - \frac{171}{259260416} a^{11} + \frac{116891}{262144} a^{10} + \frac{1}{262144} a^{9} - \frac{305}{64815104} a^{8} - \frac{171}{16203776} a^{7} + \frac{119}{4050944} a^{6} + \frac{13}{1012736} a^{5} - \frac{33}{253184} a^{4} + \frac{5}{63296} a^{3} + \frac{7}{15824} a^{2} - \frac{3}{3956} a - \frac{1}{989}$
Class group and class number
$C_{2}\times C_{22}$, which has order $44$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{305}{259260416} a^{19} + \frac{305}{259260416} a^{18} + \frac{915}{259260416} a^{17} - \frac{2135}{259260416} a^{16} - \frac{1525}{259260416} a^{15} + \frac{10065}{259260416} a^{14} - \frac{3965}{259260416} a^{13} - \frac{36295}{259260416} a^{12} + \frac{52155}{259260416} a^{11} - \frac{171}{262144} a^{10} - \frac{305}{262144} a^{9} + \frac{93025}{64815104} a^{8} + \frac{52155}{16203776} a^{7} - \frac{36295}{4050944} a^{6} - \frac{3965}{1012736} a^{5} + \frac{10065}{253184} a^{4} - \frac{1525}{63296} a^{3} - \frac{2135}{15824} a^{2} + \frac{915}{3956} a + \frac{305}{989} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2681477.98686 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-11}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.10.1790566527853125.1, \(\Q(\zeta_{11})\), 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||