Properties

Label 20.0.32061284906...5625.2
Degree $20$
Signature $[0, 10]$
Discriminant $3^{10}\cdot 5^{10}\cdot 11^{18}$
Root discriminant $33.52$
Ramified primes $3, 5, 11$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![39601, -37412, -2068, 17590, -16127, 13860, 4445, -9549, 1837, 3334, -1783, -1352, 946, 406, -318, -88, 76, 12, -11, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 11*x^18 + 12*x^17 + 76*x^16 - 88*x^15 - 318*x^14 + 406*x^13 + 946*x^12 - 1352*x^11 - 1783*x^10 + 3334*x^9 + 1837*x^8 - 9549*x^7 + 4445*x^6 + 13860*x^5 - 16127*x^4 + 17590*x^3 - 2068*x^2 - 37412*x + 39601)
 
gp: K = bnfinit(x^20 - x^19 - 11*x^18 + 12*x^17 + 76*x^16 - 88*x^15 - 318*x^14 + 406*x^13 + 946*x^12 - 1352*x^11 - 1783*x^10 + 3334*x^9 + 1837*x^8 - 9549*x^7 + 4445*x^6 + 13860*x^5 - 16127*x^4 + 17590*x^3 - 2068*x^2 - 37412*x + 39601, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 11 x^{18} + 12 x^{17} + 76 x^{16} - 88 x^{15} - 318 x^{14} + 406 x^{13} + 946 x^{12} - 1352 x^{11} - 1783 x^{10} + 3334 x^{9} + 1837 x^{8} - 9549 x^{7} + 4445 x^{6} + 13860 x^{5} - 16127 x^{4} + 17590 x^{3} - 2068 x^{2} - 37412 x + 39601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3206128490667995866421572265625=3^{10}\cdot 5^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(165=3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{165}(1,·)$, $\chi_{165}(134,·)$, $\chi_{165}(71,·)$, $\chi_{165}(136,·)$, $\chi_{165}(74,·)$, $\chi_{165}(139,·)$, $\chi_{165}(79,·)$, $\chi_{165}(16,·)$, $\chi_{165}(146,·)$, $\chi_{165}(19,·)$, $\chi_{165}(149,·)$, $\chi_{165}(86,·)$, $\chi_{165}(26,·)$, $\chi_{165}(91,·)$, $\chi_{165}(29,·)$, $\chi_{165}(94,·)$, $\chi_{165}(31,·)$, $\chi_{165}(164,·)$, $\chi_{165}(109,·)$, $\chi_{165}(56,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{89} a^{12} + \frac{34}{89} a^{11} - \frac{7}{89} a^{10} + \frac{42}{89} a^{9} + \frac{32}{89} a^{8} + \frac{44}{89} a^{7} + \frac{19}{89} a^{6} + \frac{3}{89} a^{5} + \frac{5}{89} a^{4} - \frac{40}{89} a^{3} - \frac{43}{89} a^{2} - \frac{16}{89} a + \frac{4}{89}$, $\frac{1}{89} a^{13} - \frac{6}{89} a^{11} + \frac{13}{89} a^{10} + \frac{28}{89} a^{9} + \frac{24}{89} a^{8} + \frac{36}{89} a^{7} - \frac{20}{89} a^{6} - \frac{8}{89} a^{5} - \frac{32}{89} a^{4} - \frac{18}{89} a^{3} + \frac{22}{89} a^{2} + \frac{14}{89} a + \frac{42}{89}$, $\frac{1}{89} a^{14} + \frac{39}{89} a^{11} - \frac{14}{89} a^{10} + \frac{9}{89} a^{9} - \frac{39}{89} a^{8} - \frac{23}{89} a^{7} + \frac{17}{89} a^{6} - \frac{14}{89} a^{5} + \frac{12}{89} a^{4} - \frac{40}{89} a^{3} + \frac{23}{89} a^{2} + \frac{35}{89} a + \frac{24}{89}$, $\frac{1}{89} a^{15} - \frac{5}{89} a^{11} + \frac{15}{89} a^{10} + \frac{14}{89} a^{9} - \frac{25}{89} a^{8} - \frac{8}{89} a^{7} - \frac{43}{89} a^{6} - \frac{16}{89} a^{5} + \frac{32}{89} a^{4} - \frac{19}{89} a^{3} + \frac{21}{89} a^{2} + \frac{25}{89} a + \frac{22}{89}$, $\frac{1}{89} a^{16} + \frac{7}{89} a^{11} - \frac{21}{89} a^{10} + \frac{7}{89} a^{9} - \frac{26}{89} a^{8} - \frac{1}{89} a^{7} - \frac{10}{89} a^{6} - \frac{42}{89} a^{5} + \frac{6}{89} a^{4} - \frac{1}{89} a^{3} - \frac{12}{89} a^{2} + \frac{31}{89} a + \frac{20}{89}$, $\frac{1}{3827} a^{17} - \frac{12}{3827} a^{16} - \frac{13}{3827} a^{15} - \frac{13}{3827} a^{14} + \frac{10}{3827} a^{13} - \frac{7}{3827} a^{12} - \frac{638}{3827} a^{11} + \frac{1008}{3827} a^{10} + \frac{707}{3827} a^{9} + \frac{1736}{3827} a^{8} - \frac{1097}{3827} a^{7} - \frac{406}{3827} a^{6} + \frac{1045}{3827} a^{5} + \frac{923}{3827} a^{4} - \frac{366}{3827} a^{3} - \frac{1088}{3827} a^{2} - \frac{1213}{3827} a + \frac{238}{3827}$, $\frac{1}{3827} a^{18} + \frac{15}{3827} a^{16} + \frac{3}{3827} a^{15} - \frac{17}{3827} a^{14} - \frac{16}{3827} a^{13} + \frac{9}{3827} a^{12} + \frac{1393}{3827} a^{11} - \frac{656}{3827} a^{10} - \frac{14}{3827} a^{9} - \frac{561}{3827} a^{8} + \frac{1781}{3827} a^{7} + \frac{44}{89} a^{6} + \frac{1079}{3827} a^{5} - \frac{212}{3827} a^{4} + \frac{1099}{3827} a^{3} + \frac{1899}{3827} a^{2} + \frac{1635}{3827} a - \frac{799}{3827}$, $\frac{1}{34054663175532437375954755397} a^{19} - \frac{4294998099160415235013627}{34054663175532437375954755397} a^{18} - \frac{2419881960381393667845192}{34054663175532437375954755397} a^{17} - \frac{143840111638615490062581933}{34054663175532437375954755397} a^{16} + \frac{101472651951132298900697922}{34054663175532437375954755397} a^{15} - \frac{134516616592704378128870079}{34054663175532437375954755397} a^{14} + \frac{140017777589269302288932232}{34054663175532437375954755397} a^{13} - \frac{48216778282026782581185852}{34054663175532437375954755397} a^{12} + \frac{3410558970106953262624905773}{34054663175532437375954755397} a^{11} - \frac{405226024408215702595032224}{34054663175532437375954755397} a^{10} - \frac{367381516449699616921729667}{791968911058893892464064079} a^{9} + \frac{4588393099837690929490253742}{34054663175532437375954755397} a^{8} - \frac{78681258812779489614472062}{791968911058893892464064079} a^{7} - \frac{10448299870943388147844487061}{34054663175532437375954755397} a^{6} - \frac{4450756443937130304505158075}{34054663175532437375954755397} a^{5} + \frac{12099566439857476633339925579}{34054663175532437375954755397} a^{4} - \frac{1656107920618649593344511234}{34054663175532437375954755397} a^{3} - \frac{35502800948915501026247983}{382636664893622891864660173} a^{2} + \frac{10994621556969338456038237049}{34054663175532437375954755397} a - \frac{40119727098119999741221519}{171128960681067524502285203}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{5450446576734732557919}{382636664893622891864660173} a^{19} - \frac{12760858735848176183373}{382636664893622891864660173} a^{18} + \frac{82955089180632474360445}{382636664893622891864660173} a^{17} + \frac{110344197394287202945456}{382636664893622891864660173} a^{16} - \frac{607494296181568648320204}{382636664893622891864660173} a^{15} - \frac{673043153011224117595484}{382636664893622891864660173} a^{14} + \frac{2969566953334063594678210}{382636664893622891864660173} a^{13} + \frac{2075035862535446958249014}{382636664893622891864660173} a^{12} - \frac{9243361835267626662955182}{382636664893622891864660173} a^{11} - \frac{4348110769522642391116419}{382636664893622891864660173} a^{10} + \frac{20894271280123993655079924}{382636664893622891864660173} a^{9} - \frac{706793935034519176890177}{382636664893622891864660173} a^{8} - \frac{27280821987949417065613259}{382636664893622891864660173} a^{7} + \frac{43434800389480446204509735}{382636664893622891864660173} a^{6} + \frac{67576111754189054710187241}{382636664893622891864660173} a^{5} - \frac{186909336001920118415349983}{382636664893622891864660173} a^{4} + \frac{56356266711451635366016568}{382636664893622891864660173} a^{3} - \frac{298024862461600890993355}{8898527090549369578247911} a^{2} - \frac{410333637697643852401163724}{382636664893622891864660173} a + \frac{3319818332989134310114055}{1922797311023230612385227} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5362955.97373 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{165}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-3}, \sqrt{-55})\), \(\Q(\zeta_{11})^+\), 10.10.1790566527853125.1, 10.0.52089208083.1, 10.0.7368586534375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
11Data not computed