Properties

Label 20.0.32061284906...5625.1
Degree $20$
Signature $[0, 10]$
Discriminant $3^{10}\cdot 5^{10}\cdot 11^{18}$
Root discriminant $33.52$
Ramified primes $3, 5, 11$
Class number $44$ (GRH)
Class group $[44]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9901, -1928, -1963, 3709, -134, 2937, 479, 1335, 1906, -263, 2342, -470, 1534, -266, 618, -88, 148, -15, 19, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 19*x^18 - 15*x^17 + 148*x^16 - 88*x^15 + 618*x^14 - 266*x^13 + 1534*x^12 - 470*x^11 + 2342*x^10 - 263*x^9 + 1906*x^8 + 1335*x^7 + 479*x^6 + 2937*x^5 - 134*x^4 + 3709*x^3 - 1963*x^2 - 1928*x + 9901)
 
gp: K = bnfinit(x^20 - x^19 + 19*x^18 - 15*x^17 + 148*x^16 - 88*x^15 + 618*x^14 - 266*x^13 + 1534*x^12 - 470*x^11 + 2342*x^10 - 263*x^9 + 1906*x^8 + 1335*x^7 + 479*x^6 + 2937*x^5 - 134*x^4 + 3709*x^3 - 1963*x^2 - 1928*x + 9901, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 19 x^{18} - 15 x^{17} + 148 x^{16} - 88 x^{15} + 618 x^{14} - 266 x^{13} + 1534 x^{12} - 470 x^{11} + 2342 x^{10} - 263 x^{9} + 1906 x^{8} + 1335 x^{7} + 479 x^{6} + 2937 x^{5} - 134 x^{4} + 3709 x^{3} - 1963 x^{2} - 1928 x + 9901 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3206128490667995866421572265625=3^{10}\cdot 5^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(165=3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{165}(1,·)$, $\chi_{165}(131,·)$, $\chi_{165}(136,·)$, $\chi_{165}(139,·)$, $\chi_{165}(14,·)$, $\chi_{165}(79,·)$, $\chi_{165}(16,·)$, $\chi_{165}(19,·)$, $\chi_{165}(89,·)$, $\chi_{165}(91,·)$, $\chi_{165}(94,·)$, $\chi_{165}(31,·)$, $\chi_{165}(161,·)$, $\chi_{165}(101,·)$, $\chi_{165}(104,·)$, $\chi_{165}(41,·)$, $\chi_{165}(109,·)$, $\chi_{165}(116,·)$, $\chi_{165}(119,·)$, $\chi_{165}(59,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{89} a^{11} + \frac{11}{89} a^{9} + \frac{44}{89} a^{7} - \frac{12}{89} a^{5} - \frac{34}{89} a^{3} + \frac{11}{89} a - \frac{34}{89}$, $\frac{1}{89} a^{12} + \frac{11}{89} a^{10} + \frac{44}{89} a^{8} - \frac{12}{89} a^{6} - \frac{34}{89} a^{4} + \frac{11}{89} a^{2} - \frac{34}{89} a$, $\frac{1}{89} a^{13} + \frac{12}{89} a^{9} + \frac{38}{89} a^{7} + \frac{9}{89} a^{5} + \frac{29}{89} a^{3} - \frac{34}{89} a^{2} - \frac{32}{89} a + \frac{18}{89}$, $\frac{1}{89} a^{14} + \frac{12}{89} a^{10} + \frac{38}{89} a^{8} + \frac{9}{89} a^{6} + \frac{29}{89} a^{4} - \frac{34}{89} a^{3} - \frac{32}{89} a^{2} + \frac{18}{89} a$, $\frac{1}{178} a^{15} - \frac{1}{178} a^{13} - \frac{1}{178} a^{12} + \frac{39}{89} a^{10} + \frac{36}{89} a^{9} - \frac{22}{89} a^{8} - \frac{23}{178} a^{7} - \frac{77}{178} a^{6} + \frac{75}{178} a^{5} - \frac{1}{2} a^{4} - \frac{9}{178} a^{3} + \frac{41}{178} a^{2} + \frac{23}{178} a - \frac{55}{178}$, $\frac{1}{3524578} a^{16} - \frac{4875}{3524578} a^{15} - \frac{15235}{3524578} a^{14} - \frac{4161}{1762289} a^{13} - \frac{14975}{3524578} a^{12} - \frac{6966}{1762289} a^{11} - \frac{375627}{1762289} a^{10} - \frac{743912}{1762289} a^{9} + \frac{103415}{3524578} a^{8} - \frac{733163}{1762289} a^{7} - \frac{153595}{1762289} a^{6} + \frac{614519}{1762289} a^{5} - \frac{424790}{1762289} a^{4} - \frac{587334}{1762289} a^{3} - \frac{777252}{1762289} a^{2} + \frac{207847}{1762289} a + \frac{316655}{3524578}$, $\frac{1}{3524578} a^{17} + \frac{141}{3524578} a^{15} + \frac{14405}{3524578} a^{14} - \frac{6238}{1762289} a^{13} - \frac{5385}{1762289} a^{12} + \frac{57}{1762289} a^{11} - \frac{392440}{1762289} a^{10} + \frac{1295377}{3524578} a^{9} + \frac{13613}{3524578} a^{8} - \frac{1178475}{3524578} a^{7} + \frac{375975}{3524578} a^{6} + \frac{927971}{3524578} a^{5} - \frac{1082197}{3524578} a^{4} + \frac{1734565}{3524578} a^{3} + \frac{1457265}{3524578} a^{2} + \frac{66576}{1762289} a + \frac{191692}{1762289}$, $\frac{1}{3524578} a^{18} + \frac{8745}{3524578} a^{15} - \frac{2849}{3524578} a^{14} - \frac{5627}{3524578} a^{13} - \frac{3559}{1762289} a^{12} - \frac{4264}{1762289} a^{11} + \frac{98781}{3524578} a^{10} + \frac{1133859}{3524578} a^{9} + \frac{40405}{1762289} a^{8} + \frac{687875}{1762289} a^{7} - \frac{343354}{1762289} a^{6} + \frac{124232}{1762289} a^{5} - \frac{867940}{1762289} a^{4} - \frac{86797}{1762289} a^{3} - \frac{849103}{3524578} a^{2} + \frac{1232933}{3524578} a + \frac{179659}{1762289}$, $\frac{1}{3524578} a^{19} - \frac{2527}{3524578} a^{15} + \frac{1660}{1762289} a^{14} + \frac{97}{3524578} a^{13} + \frac{1917}{1762289} a^{12} - \frac{437}{3524578} a^{11} - \frac{1577035}{3524578} a^{10} + \frac{367917}{1762289} a^{9} - \frac{656855}{3524578} a^{8} - \frac{734035}{3524578} a^{7} + \frac{1391603}{3524578} a^{6} + \frac{1378765}{3524578} a^{5} - \frac{1218759}{3524578} a^{4} + \frac{16008}{1762289} a^{3} + \frac{724643}{1762289} a^{2} - \frac{945789}{3524578} a + \frac{852480}{1762289}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{44}$, which has order $44$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 125582.779517 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\), 10.0.7368586534375.1, 10.0.162778775259375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ R R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
11Data not computed