Normalized defining polynomial
\( x^{20} - 10 x^{18} + 55 x^{16} - 200 x^{14} + 485 x^{12} - 798 x^{10} + 865 x^{8} - 420 x^{6} + 35 x^{4} + 50 x^{2} + 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(320000000000000000000000000=2^{30}\cdot 5^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{6} + \frac{5}{16} a^{4} - \frac{5}{16} a^{2} - \frac{5}{16}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} + \frac{5}{16} a^{5} - \frac{5}{16} a^{3} - \frac{5}{16} a$, $\frac{1}{5554208} a^{18} - \frac{1}{32} a^{17} - \frac{51763}{2777104} a^{16} + \frac{1}{32} a^{15} - \frac{9}{682} a^{14} - \frac{3}{32} a^{13} + \frac{86839}{5554208} a^{12} + \frac{1}{16} a^{11} - \frac{151909}{1388552} a^{10} + \frac{3}{16} a^{9} + \frac{33492}{173569} a^{8} + \frac{3}{16} a^{7} - \frac{105887}{504928} a^{6} - \frac{5}{32} a^{5} - \frac{401743}{2777104} a^{4} + \frac{13}{32} a^{3} + \frac{16241}{347138} a^{2} - \frac{15}{32} a + \frac{296405}{5554208}$, $\frac{1}{5554208} a^{19} + \frac{70043}{5554208} a^{17} - \frac{1}{32} a^{16} - \frac{485}{10912} a^{15} + \frac{1}{32} a^{14} + \frac{303773}{2777104} a^{13} - \frac{3}{32} a^{12} + \frac{216889}{2777104} a^{11} + \frac{1}{16} a^{10} - \frac{679111}{2777104} a^{9} + \frac{3}{16} a^{8} - \frac{74329}{504928} a^{7} + \frac{3}{16} a^{6} + \frac{1452911}{5554208} a^{5} - \frac{5}{32} a^{4} + \frac{2169115}{5554208} a^{3} + \frac{13}{32} a^{2} - \frac{316429}{1388552} a - \frac{15}{32}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{575}{5456} a^{18} + \frac{1475}{1364} a^{16} - \frac{16545}{2728} a^{14} + \frac{122965}{5456} a^{12} - \frac{38441}{682} a^{10} + \frac{131885}{1364} a^{8} - \frac{55395}{496} a^{6} + \frac{90515}{1364} a^{4} - \frac{38125}{2728} a^{2} - \frac{20853}{5456} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 665063.298986 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $D_{20}$ |
| Character table for $D_{20}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.320.1, 5.1.250000.1, 10.0.250000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $5$ | 5.10.13.8 | $x^{10} + 20 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |
| 5.10.12.7 | $x^{10} + 10 x^{8} + 5 x^{7} + 15 x^{6} + 5 x^{4} + 5 x^{2} - 20 x + 7$ | $5$ | $2$ | $12$ | $D_{10}$ | $[3/2]_{2}^{2}$ |