Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} - 3 x^{17} + 8 x^{16} - 6 x^{15} + 17 x^{14} - 12 x^{13} + 36 x^{12} - 29 x^{11} + 88 x^{10} + 80 x^{9} + 162 x^{8} + 42 x^{7} + 90 x^{6} - 42 x^{5} + 15 x^{4} - 15 x^{3} + 52 x^{2} + 20 x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31913046866560147064793841=11^{16}\cdot 307^{2}\cdot 7369\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 307, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{5}{11} a^{7} - \frac{1}{11} a^{6} + \frac{4}{11} a^{4} - \frac{3}{11} a^{3} + \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{9} - \frac{4}{11} a^{7} + \frac{5}{11} a^{6} + \frac{4}{11} a^{5} - \frac{1}{11} a^{4} - \frac{4}{11} a^{3} + \frac{4}{11} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{10} + \frac{3}{11} a^{7} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{3}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{11} - \frac{4}{11} a^{7} + \frac{2}{11} a^{6} + \frac{1}{11} a^{5} + \frac{2}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{11} a^{12} - \frac{3}{11} a^{6} + \frac{2}{11} a^{5} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{7} + \frac{2}{11} a^{6} - \frac{5}{11} a^{5} - \frac{1}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11} a^{2} + \frac{3}{11} a$, $\frac{1}{11} a^{14} - \frac{5}{11} a^{7} + \frac{3}{11} a^{6} - \frac{1}{11} a^{5} + \frac{3}{11} a^{4} - \frac{4}{11} a^{3} + \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{5}{11}$, $\frac{1}{121} a^{15} - \frac{5}{121} a^{14} - \frac{1}{121} a^{13} + \frac{5}{121} a^{12} + \frac{1}{121} a^{10} - \frac{3}{121} a^{9} - \frac{2}{121} a^{8} + \frac{6}{121} a^{7} - \frac{29}{121} a^{6} + \frac{10}{121} a^{5} + \frac{17}{121} a^{4} + \frac{31}{121} a^{3} + \frac{24}{121} a^{2} - \frac{2}{11} a - \frac{43}{121}$, $\frac{1}{121} a^{16} - \frac{4}{121} a^{14} + \frac{3}{121} a^{12} + \frac{1}{121} a^{11} + \frac{2}{121} a^{10} + \frac{5}{121} a^{9} - \frac{4}{121} a^{8} + \frac{45}{121} a^{7} - \frac{14}{121} a^{6} - \frac{32}{121} a^{5} + \frac{28}{121} a^{4} + \frac{25}{121} a^{3} + \frac{43}{121} a^{2} - \frac{54}{121} a + \frac{49}{121}$, $\frac{1}{121} a^{17} + \frac{2}{121} a^{14} - \frac{1}{121} a^{13} - \frac{1}{121} a^{12} + \frac{2}{121} a^{11} - \frac{2}{121} a^{10} - \frac{5}{121} a^{9} + \frac{4}{121} a^{8} + \frac{21}{121} a^{7} - \frac{49}{121} a^{6} + \frac{57}{121} a^{5} - \frac{6}{121} a^{4} + \frac{2}{121} a^{3} + \frac{53}{121} a^{2} + \frac{38}{121} a + \frac{15}{121}$, $\frac{1}{121} a^{18} - \frac{2}{121} a^{14} + \frac{1}{121} a^{13} + \frac{3}{121} a^{12} - \frac{2}{121} a^{11} + \frac{4}{121} a^{10} - \frac{1}{121} a^{9} + \frac{3}{121} a^{8} - \frac{39}{121} a^{7} + \frac{16}{121} a^{6} - \frac{48}{121} a^{5} + \frac{56}{121} a^{4} + \frac{46}{121} a^{3} + \frac{45}{121} a^{2} - \frac{7}{121} a + \frac{31}{121}$, $\frac{1}{9588403} a^{19} + \frac{540}{871673} a^{18} + \frac{26408}{9588403} a^{17} - \frac{11215}{9588403} a^{16} + \frac{15056}{9588403} a^{15} - \frac{334629}{9588403} a^{14} + \frac{334484}{9588403} a^{13} + \frac{20950}{871673} a^{12} - \frac{294797}{9588403} a^{11} + \frac{119023}{9588403} a^{10} + \frac{268171}{9588403} a^{9} + \frac{419691}{9588403} a^{8} - \frac{2373892}{9588403} a^{7} - \frac{2951396}{9588403} a^{6} + \frac{3262513}{9588403} a^{5} + \frac{27872}{871673} a^{4} + \frac{4262611}{9588403} a^{3} - \frac{2762537}{9588403} a^{2} - \frac{1165451}{9588403} a + \frac{1180642}{9588403}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24199.9496545 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 649 conjugacy class representatives for t20n846 are not computed |
| Character table for t20n846 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.65808176467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 307 | Data not computed | ||||||
| 7369 | Data not computed | ||||||