Normalized defining polynomial
\( x^{20} - 5 x^{19} + 19 x^{18} - 48 x^{17} + 108 x^{16} - 180 x^{15} + 243 x^{14} - 219 x^{13} + 153 x^{12} - 50 x^{11} - 377 x^{10} + 973 x^{9} - 1023 x^{8} + 222 x^{7} + 1050 x^{6} - 1107 x^{5} - 396 x^{4} + 696 x^{3} + 268 x^{2} - 434 x + 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31874096343147504926018949=3^{19}\cdot 223^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{51004073074042978016178699050245} a^{19} - \frac{12221154417397138923366321648122}{51004073074042978016178699050245} a^{18} + \frac{3769113088224816067876856575163}{51004073074042978016178699050245} a^{17} - \frac{18569248204258831235953221956969}{51004073074042978016178699050245} a^{16} + \frac{7778468352956210066515904713151}{51004073074042978016178699050245} a^{15} - \frac{16910391076527568720347428934977}{51004073074042978016178699050245} a^{14} - \frac{19536031585486945319998327507198}{51004073074042978016178699050245} a^{13} + \frac{15842515311231235452297657542747}{51004073074042978016178699050245} a^{12} - \frac{21300941228863432136701568056401}{51004073074042978016178699050245} a^{11} + \frac{725370373168849012758279047632}{51004073074042978016178699050245} a^{10} + \frac{24377716934924060550574945496454}{51004073074042978016178699050245} a^{9} + \frac{2132449858332554037603339934002}{10200814614808595603235739810049} a^{8} - \frac{11798368240401287155087476033493}{51004073074042978016178699050245} a^{7} - \frac{8864142714366465783867242889352}{51004073074042978016178699050245} a^{6} + \frac{21129906262470257066486268412474}{51004073074042978016178699050245} a^{5} + \frac{1958633727813720901043804165390}{10200814614808595603235739810049} a^{4} + \frac{25425156710889919736589826438749}{51004073074042978016178699050245} a^{3} + \frac{19925339210760587304826781339318}{51004073074042978016178699050245} a^{2} + \frac{25489318969736366927568453931192}{51004073074042978016178699050245} a - \frac{1263625772716180945283284352118}{51004073074042978016178699050245}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{89823302447239604}{1619643228348147295} a^{19} - \frac{388841908651209123}{1619643228348147295} a^{18} + \frac{1451743123667227272}{1619643228348147295} a^{17} - \frac{3357892374386216281}{1619643228348147295} a^{16} + \frac{7525345587834591984}{1619643228348147295} a^{15} - \frac{11267788976331523453}{1619643228348147295} a^{14} + \frac{14612510788172315083}{1619643228348147295} a^{13} - \frac{10238623224133236752}{1619643228348147295} a^{12} + \frac{7331741760310562436}{1619643228348147295} a^{11} + \frac{542616985514655108}{1619643228348147295} a^{10} - \frac{33629969905951738609}{1619643228348147295} a^{9} + \frac{13170687806005616598}{323928645669629459} a^{8} - \frac{50549810693992731302}{1619643228348147295} a^{7} - \frac{10522920150829056498}{1619643228348147295} a^{6} + \frac{85571744400754714666}{1619643228348147295} a^{5} - \frac{8737624030130584640}{323928645669629459} a^{4} - \frac{59673395851879241779}{1619643228348147295} a^{3} + \frac{21652529147766568362}{1619643228348147295} a^{2} + \frac{36239922324048387853}{1619643228348147295} a - \frac{15277414532064744732}{1619643228348147295} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119850.009202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.6021.1, 5.3.18063.1, 10.0.978815907.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||