Normalized defining polynomial
\( x^{20} + 310 x^{18} + 39870 x^{16} + 2798650 x^{14} + 118780475 x^{12} + 3179289615 x^{10} + 54008113350 x^{8} + 566304002475 x^{6} + 3383696380375 x^{4} + 9384437729375 x^{2} + 5169421368005 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3155164409182739257812500000000000000000000=2^{20}\cdot 5^{35}\cdot 251^{2}\cdot 4051^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 251, 4051$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4724921148910191724856811889904322882588458104744249} a^{18} - \frac{1175640049967488918423911378666606292406455513575950}{4724921148910191724856811889904322882588458104744249} a^{16} + \frac{2260055934161755388312315568946778950160944047771613}{4724921148910191724856811889904322882588458104744249} a^{14} + \frac{6685817134401795690667976713484337007708866717026}{18824387047450963047238294382088935787205012369499} a^{12} + \frac{2296741715748550706223967057789653365214954626616166}{4724921148910191724856811889904322882588458104744249} a^{10} - \frac{1549467128189680429395659064539896443631778488666097}{4724921148910191724856811889904322882588458104744249} a^{8} - \frac{1817910854291680577146636021374454658749457899316776}{4724921148910191724856811889904322882588458104744249} a^{6} - \frac{57223247103868890360656175446089410705166629394}{4724921148910191724856811889904322882588458104744249} a^{4} - \frac{1992092639468369374519025356086042626320189709886032}{4724921148910191724856811889904322882588458104744249} a^{2} + \frac{1694519691879463202826456038638807340706812973}{4646849431609716871695456524830643245422121049}$, $\frac{1}{4724921148910191724856811889904322882588458104744249} a^{19} - \frac{1175640049967488918423911378666606292406455513575950}{4724921148910191724856811889904322882588458104744249} a^{17} + \frac{2260055934161755388312315568946778950160944047771613}{4724921148910191724856811889904322882588458104744249} a^{15} + \frac{6685817134401795690667976713484337007708866717026}{18824387047450963047238294382088935787205012369499} a^{13} + \frac{2296741715748550706223967057789653365214954626616166}{4724921148910191724856811889904322882588458104744249} a^{11} - \frac{1549467128189680429395659064539896443631778488666097}{4724921148910191724856811889904322882588458104744249} a^{9} - \frac{1817910854291680577146636021374454658749457899316776}{4724921148910191724856811889904322882588458104744249} a^{7} - \frac{57223247103868890360656175446089410705166629394}{4724921148910191724856811889904322882588458104744249} a^{5} - \frac{1992092639468369374519025356086042626320189709886032}{4724921148910191724856811889904322882588458104744249} a^{3} + \frac{1694519691879463202826456038638807340706812973}{4646849431609716871695456524830643245422121049} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2488294}$, which has order $39812704$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n344 are not computed |
| Character table for t20n344 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 251 | Data not computed | ||||||
| 4051 | Data not computed | ||||||