Normalized defining polynomial
\( x^{20} + 320 x^{18} + 42620 x^{16} + 3089950 x^{14} + 133406025 x^{12} + 3518361755 x^{10} + 55944354250 x^{8} + 513229518325 x^{6} + 2534690146825 x^{4} + 5948819670525 x^{2} + 5169421368005 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3155164409182739257812500000000000000000000=2^{20}\cdot 5^{35}\cdot 251^{2}\cdot 4051^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 251, 4051$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{101} a^{16} - \frac{31}{101} a^{14} - \frac{8}{101} a^{12} - \frac{8}{101} a^{10} - \frac{13}{101} a^{8} + \frac{42}{101} a^{6} - \frac{14}{101} a^{4} - \frac{16}{101} a^{2} + \frac{47}{101}$, $\frac{1}{101} a^{17} - \frac{31}{101} a^{15} - \frac{8}{101} a^{13} - \frac{8}{101} a^{11} - \frac{13}{101} a^{9} + \frac{42}{101} a^{7} - \frac{14}{101} a^{5} - \frac{16}{101} a^{3} + \frac{47}{101} a$, $\frac{1}{4646471356354126959243969266768604318503043198392749} a^{18} + \frac{21738000948891620982627141085606980430872308589869}{4646471356354126959243969266768604318503043198392749} a^{16} - \frac{1673009388479757324000700431910413211758102732105333}{4646471356354126959243969266768604318503043198392749} a^{14} - \frac{2318456618591067998719941090330163358215000335030507}{4646471356354126959243969266768604318503043198392749} a^{12} - \frac{244556699919204390289749701205178605116570401502547}{4646471356354126959243969266768604318503043198392749} a^{10} + \frac{126460369284492567016828786789760402498048625840401}{4646471356354126959243969266768604318503043198392749} a^{8} + \frac{2067644785572527378453565052060978079792281257171593}{4646471356354126959243969266768604318503043198392749} a^{6} + \frac{2172896608249019945294755786521922707548752510328325}{4646471356354126959243969266768604318503043198392749} a^{4} + \frac{621997707069666239309328280661745337649397281968126}{4646471356354126959243969266768604318503043198392749} a^{2} + \frac{78282060386881851185706893421431167044449954}{4569695895611950577589881664916344809360969549}$, $\frac{1}{4646471356354126959243969266768604318503043198392749} a^{19} + \frac{21738000948891620982627141085606980430872308589869}{4646471356354126959243969266768604318503043198392749} a^{17} - \frac{1673009388479757324000700431910413211758102732105333}{4646471356354126959243969266768604318503043198392749} a^{15} - \frac{2318456618591067998719941090330163358215000335030507}{4646471356354126959243969266768604318503043198392749} a^{13} - \frac{244556699919204390289749701205178605116570401502547}{4646471356354126959243969266768604318503043198392749} a^{11} + \frac{126460369284492567016828786789760402498048625840401}{4646471356354126959243969266768604318503043198392749} a^{9} + \frac{2067644785572527378453565052060978079792281257171593}{4646471356354126959243969266768604318503043198392749} a^{7} + \frac{2172896608249019945294755786521922707548752510328325}{4646471356354126959243969266768604318503043198392749} a^{5} + \frac{621997707069666239309328280661745337649397281968126}{4646471356354126959243969266768604318503043198392749} a^{3} + \frac{78282060386881851185706893421431167044449954}{4569695895611950577589881664916344809360969549} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{399660}$, which has order $38367360$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_2^4:C_5$ (as 20T75):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_4\times C_2^4:C_5$ |
| Character table for $C_4\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 251 | Data not computed | ||||||
| 4051 | Data not computed | ||||||