Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} - 10 x^{17} - 14 x^{16} + 160 x^{15} - 434 x^{14} + 683 x^{13} - 967 x^{12} - 870 x^{11} + 6845 x^{10} - 13758 x^{9} + 29955 x^{8} - 41275 x^{7} + 50182 x^{6} - 94915 x^{5} + 84960 x^{4} - 27434 x^{3} + 82905 x^{2} + 7751 x + 21061 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3149070808568813267726079513=3^{10}\cdot 37^{3}\cdot 109^{3}\cdot 241^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 109, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1643033383696858576567594716627545437621962510853271} a^{19} + \frac{188171981514733280327719966746282033875244391581328}{1643033383696858576567594716627545437621962510853271} a^{18} - \frac{807072117223612273999937718456853918924416321416389}{1643033383696858576567594716627545437621962510853271} a^{17} - \frac{602480310134891366651677561488935419378338087419066}{1643033383696858576567594716627545437621962510853271} a^{16} + \frac{686348677241931810868039667717370625289924168718818}{1643033383696858576567594716627545437621962510853271} a^{15} - \frac{543353459184559307075629730865869096792935355967640}{1643033383696858576567594716627545437621962510853271} a^{14} - \frac{307947623138966338126750734169977362777680446587756}{1643033383696858576567594716627545437621962510853271} a^{13} + \frac{475160088024667479653340732776552647475977963252960}{1643033383696858576567594716627545437621962510853271} a^{12} - \frac{605178001915463898401355348970070162758049068533147}{1643033383696858576567594716627545437621962510853271} a^{11} - \frac{441049055092680210125564090796010525849281702567667}{1643033383696858576567594716627545437621962510853271} a^{10} + \frac{443265404165103269927754643788014241384116782423391}{1643033383696858576567594716627545437621962510853271} a^{9} - \frac{178589398996404135344911328041994339782885525778925}{1643033383696858576567594716627545437621962510853271} a^{8} + \frac{580465327441910272677009851189637447168652699725914}{1643033383696858576567594716627545437621962510853271} a^{7} - \frac{171573084931723025085596746168541358059179718704293}{1643033383696858576567594716627545437621962510853271} a^{6} + \frac{487640527843128571172702083634417150780673148302078}{1643033383696858576567594716627545437621962510853271} a^{5} + \frac{151200993434956937892249496319737411668855101094833}{1643033383696858576567594716627545437621962510853271} a^{4} + \frac{359922056921977751671849989139473573275998508063854}{1643033383696858576567594716627545437621962510853271} a^{3} + \frac{123537829233799454568318945849555240036788954073846}{1643033383696858576567594716627545437621962510853271} a^{2} + \frac{404438144844466630004317400572063535104473701800645}{1643033383696858576567594716627545437621962510853271} a + \frac{582712573460853736321653266464813145355137572986767}{1643033383696858576567594716627545437621962510853271}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{112922583919906254593880025}{271981066525018596466508713577} a^{19} - \frac{798178873005515567695549151}{271981066525018596466508713577} a^{18} + \frac{2176083833087870489561108141}{271981066525018596466508713577} a^{17} - \frac{2538581268659425161239513845}{271981066525018596466508713577} a^{16} - \frac{975199308546439804027667813}{271981066525018596466508713577} a^{15} + \frac{20783622607777098893178486305}{271981066525018596466508713577} a^{14} - \frac{68690535682323599723094363601}{271981066525018596466508713577} a^{13} + \frac{125744199688965346682821883932}{271981066525018596466508713577} a^{12} - \frac{173992158347911024007081449065}{271981066525018596466508713577} a^{11} - \frac{21295704868944664061545969636}{271981066525018596466508713577} a^{10} + \frac{937107375447560431358647996412}{271981066525018596466508713577} a^{9} - \frac{2421505965839789707811275022551}{271981066525018596466508713577} a^{8} + \frac{4866062348512245346003199093647}{271981066525018596466508713577} a^{7} - \frac{7583326301025061342870435890378}{271981066525018596466508713577} a^{6} + \frac{9243788586617417876743909402154}{271981066525018596466508713577} a^{5} - \frac{14258629033883655414073373510008}{271981066525018596466508713577} a^{4} + \frac{17755975969242629764334774155877}{271981066525018596466508713577} a^{3} - \frac{9018819202872480501595765431052}{271981066525018596466508713577} a^{2} + \frac{5965457261351704256914787107897}{271981066525018596466508713577} a - \frac{3664879367271032038402506784609}{271981066525018596466508713577} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 597728.148931 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.0.236184579.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 37 | Data not computed | ||||||
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.4.3.2 | $x^{4} - 3924$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 241 | Data not computed | ||||||