Normalized defining polynomial
\( x^{20} - 41 x^{18} - 12 x^{17} + 780 x^{16} + 204 x^{15} - 8634 x^{14} + 324 x^{13} + 60849 x^{12} - 39048 x^{11} - 269871 x^{10} + 344478 x^{9} + 914778 x^{8} - 1408896 x^{7} - 2510994 x^{6} + 2515542 x^{5} + 4162668 x^{4} - 1873344 x^{3} - 550760 x^{2} + 6029496 x + 4345624 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(312414937093187559824400000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{12} - \frac{1}{6} a^{9} - \frac{1}{18} a^{8} + \frac{1}{3} a^{7} - \frac{1}{18} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{13} + \frac{1}{9} a^{9} - \frac{7}{18} a^{7} - \frac{1}{2} a^{5} - \frac{4}{9} a^{3} - \frac{4}{9} a$, $\frac{1}{180} a^{16} + \frac{1}{45} a^{15} + \frac{1}{18} a^{13} + \frac{7}{90} a^{12} - \frac{1}{30} a^{11} + \frac{1}{90} a^{10} + \frac{1}{9} a^{9} + \frac{7}{60} a^{8} + \frac{37}{90} a^{7} - \frac{17}{45} a^{6} + \frac{4}{15} a^{5} - \frac{13}{90} a^{4} - \frac{1}{90} a^{3} - \frac{2}{15} a^{2} - \frac{2}{45} a - \frac{16}{45}$, $\frac{1}{180} a^{17} + \frac{1}{45} a^{15} - \frac{1}{30} a^{13} - \frac{1}{15} a^{12} - \frac{1}{45} a^{11} + \frac{1}{15} a^{10} - \frac{19}{180} a^{9} + \frac{11}{30} a^{7} - \frac{1}{2} a^{6} + \frac{11}{90} a^{5} - \frac{13}{30} a^{4} + \frac{1}{45} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{15}$, $\frac{1}{180} a^{18} + \frac{1}{45} a^{15} + \frac{1}{45} a^{14} - \frac{1}{90} a^{13} + \frac{1}{18} a^{12} + \frac{1}{30} a^{11} + \frac{1}{60} a^{10} - \frac{1}{18} a^{9} - \frac{7}{45} a^{8} + \frac{11}{45} a^{7} + \frac{7}{90} a^{6} - \frac{1}{6} a^{5} + \frac{4}{15} a^{4} + \frac{19}{45} a^{3} + \frac{1}{45} a^{2} + \frac{7}{45} a - \frac{1}{45}$, $\frac{1}{23567110071666239455051501108650650251684535275307940} a^{19} + \frac{3850216907557366078057587945651342924635590195339}{7855703357222079818350500369550216750561511758435980} a^{18} + \frac{8082658473162009251798696260571512652446021148897}{11783555035833119727525750554325325125842267637653970} a^{17} - \frac{14617137605614709390561826907325431846012663392097}{5891777517916559863762875277162662562921133818826985} a^{16} + \frac{9090476338325695007193288238755412123760324346785}{785570335722207981835050036955021675056151175843598} a^{15} - \frac{16373289007901636391902382212114854764424900266047}{1963925839305519954587625092387554187640377939608995} a^{14} - \frac{296903334445585309111455810870020106155954126242417}{5891777517916559863762875277162662562921133818826985} a^{13} + \frac{64386790158417304517720057768444300841571795196807}{1178355503583311972752575055432532512584226763765397} a^{12} + \frac{725577443545493059022533862635442378378027860247111}{23567110071666239455051501108650650251684535275307940} a^{11} - \frac{185557325656631283408624989101514450374853846703187}{4713422014333247891010300221730130050336907055061588} a^{10} - \frac{61527664083852327776150070239471963159237629108173}{1309283892870346636391750061591702791760251959739330} a^{9} - \frac{295104576272932619958561009532067734065688606859182}{1963925839305519954587625092387554187640377939608995} a^{8} - \frac{1504107873731857392192742534311233856061012745848951}{11783555035833119727525750554325325125842267637653970} a^{7} + \frac{4991845916899621526008453575729835138159254838410817}{11783555035833119727525750554325325125842267637653970} a^{6} + \frac{18230709549892599254884633748200842027348354470549}{1178355503583311972752575055432532512584226763765397} a^{5} - \frac{625671283825396861380027198746100108491648035379317}{5891777517916559863762875277162662562921133818826985} a^{4} + \frac{887111565438623426545665514359422621171205180186583}{1963925839305519954587625092387554187640377939608995} a^{3} - \frac{746829815155767865686055609807218598981976196941882}{1963925839305519954587625092387554187640377939608995} a^{2} - \frac{66389561753023752381362792612968018442247481073585}{392785167861103990917525018477510837528075587921799} a - \frac{2100783741516440511950917408392399731610035592026294}{5891777517916559863762875277162662562921133818826985}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4049681427.5162997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-15}, \sqrt{17})\), 5.1.162000.1, 10.0.393660000000.1, 10.0.558940906620000000.1, 10.2.37262727108000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |