Normalized defining polynomial
\( x^{20} - 3 x^{19} - 13 x^{18} + 84 x^{17} - 33 x^{16} - 99 x^{15} - 657 x^{14} - 5334 x^{13} + 31653 x^{12} + 24135 x^{11} - 188889 x^{10} - 436230 x^{9} + 910200 x^{8} + 4014000 x^{7} - 5542500 x^{6} - 15243750 x^{5} + 24562500 x^{4} + 22500000 x^{3} - 43750000 x^{2} + 39062500 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(312414937093187559824400000000000000=2^{16}\cdot 3^{18}\cdot 5^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{25} a^{12} + \frac{2}{25} a^{11} - \frac{3}{25} a^{10} - \frac{6}{25} a^{9} + \frac{12}{25} a^{8} + \frac{11}{25} a^{7} - \frac{2}{25} a^{6} + \frac{6}{25} a^{5} + \frac{8}{25} a^{4} + \frac{11}{25} a^{2}$, $\frac{1}{125} a^{13} + \frac{2}{125} a^{12} - \frac{3}{125} a^{11} - \frac{56}{125} a^{10} + \frac{62}{125} a^{9} - \frac{39}{125} a^{8} + \frac{23}{125} a^{7} + \frac{31}{125} a^{6} + \frac{58}{125} a^{5} + \frac{2}{5} a^{4} - \frac{14}{125} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{625} a^{14} + \frac{2}{625} a^{13} - \frac{3}{625} a^{12} - \frac{56}{625} a^{11} + \frac{62}{625} a^{10} - \frac{39}{625} a^{9} - \frac{102}{625} a^{8} + \frac{156}{625} a^{7} - \frac{192}{625} a^{6} + \frac{12}{25} a^{5} - \frac{14}{625} a^{4} + \frac{8}{25} a^{3} - \frac{2}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{6250} a^{15} - \frac{3}{6250} a^{14} - \frac{13}{6250} a^{13} + \frac{42}{3125} a^{12} - \frac{33}{6250} a^{11} - \frac{99}{6250} a^{10} - \frac{657}{6250} a^{9} + \frac{458}{3125} a^{8} + \frac{403}{6250} a^{7} - \frac{173}{1250} a^{6} - \frac{1389}{6250} a^{5} + \frac{127}{625} a^{4} - \frac{46}{125} a^{3} + \frac{6}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{31250} a^{16} + \frac{1}{15625} a^{15} + \frac{11}{15625} a^{14} + \frac{119}{31250} a^{13} + \frac{237}{31250} a^{12} - \frac{1532}{15625} a^{11} + \frac{974}{15625} a^{10} - \frac{10569}{31250} a^{9} - \frac{117}{31250} a^{8} + \frac{54}{625} a^{7} - \frac{7657}{15625} a^{6} + \frac{373}{1250} a^{5} + \frac{192}{625} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{156250} a^{17} + \frac{1}{78125} a^{16} - \frac{3}{156250} a^{15} - \frac{28}{78125} a^{14} + \frac{31}{78125} a^{13} + \frac{918}{78125} a^{12} - \frac{1977}{156250} a^{11} - \frac{5547}{78125} a^{10} - \frac{5721}{78125} a^{9} + \frac{981}{3125} a^{8} - \frac{58139}{156250} a^{7} + \frac{79}{3125} a^{6} - \frac{2227}{6250} a^{5} + \frac{12}{625} a^{4} - \frac{49}{125} a^{3} + \frac{8}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{913439843750} a^{18} - \frac{1033994}{456719921875} a^{17} + \frac{6709567}{913439843750} a^{16} + \frac{62910639}{913439843750} a^{15} - \frac{19716023}{913439843750} a^{14} - \frac{3596916219}{913439843750} a^{13} + \frac{16724937483}{913439843750} a^{12} + \frac{38907140561}{913439843750} a^{11} + \frac{328396496643}{913439843750} a^{10} + \frac{20111794411}{182687968750} a^{9} + \frac{69765673011}{913439843750} a^{8} + \frac{89501109287}{182687968750} a^{7} + \frac{294983467}{3653759375} a^{6} - \frac{64253467}{292300750} a^{5} - \frac{6121944}{730751875} a^{4} - \frac{19149079}{146150375} a^{3} + \frac{13400167}{29230075} a^{2} + \frac{1086098}{5846015} a - \frac{465450}{1169203}$, $\frac{1}{83318930409739793084890644695901864136718750} a^{19} - \frac{12438646795395668428626926563544}{41659465204869896542445322347950932068359375} a^{18} - \frac{824180799177857594821495638225067556}{382196928485044922407755250898632404296875} a^{17} - \frac{1009545728728695841186831670440289836711}{83318930409739793084890644695901864136718750} a^{16} + \frac{2610332117757781718277647854884523213401}{41659465204869896542445322347950932068359375} a^{15} - \frac{5601935379120380221963669909481214456817}{11902704344248541869270092099414552019531250} a^{14} - \frac{183299382159434913833966559980225473748017}{83318930409739793084890644695901864136718750} a^{13} + \frac{1649210630054149053278101051417029934087561}{83318930409739793084890644695901864136718750} a^{12} + \frac{2589559383287198559103160931333999553311784}{41659465204869896542445322347950932068359375} a^{11} - \frac{7053676629473172849700081169228432257861439}{16663786081947958616978128939180372827343750} a^{10} - \frac{10814350698511931455775827645752582899776839}{83318930409739793084890644695901864136718750} a^{9} + \frac{5510854655463738611819391824947788763777017}{16663786081947958616978128939180372827343750} a^{8} - \frac{1383135673656290011249340996446869568694553}{3332757216389591723395625787836074565468750} a^{7} + \frac{65236357259858039943408565390214466042359}{133310288655583668935825031513442982618750} a^{6} + \frac{42996009906670329940338138574219618266307}{133310288655583668935825031513442982618750} a^{5} + \frac{5001029252929903404899384063849728083629}{13331028865558366893582503151344298261875} a^{4} - \frac{6445836496017711460159521501791826574}{380886539015953339816642947181265664625} a^{3} + \frac{173800078557078551515973478595265729453}{533241154622334675743300126053771930475} a^{2} - \frac{8540705490657565129133201967416322912}{106648230924466935148660025210754386095} a - \frac{8078004389844261664400585005155331032}{21329646184893387029732005042150877219}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4271304143.474904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{-15}, \sqrt{-51})\), 5.1.162000.1, 10.0.393660000000.1, 10.0.111788181324000000.1, 10.2.186313635540000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |