Normalized defining polynomial
\( x^{20} - 10 x^{19} + 64 x^{18} - 291 x^{17} + 1069 x^{16} - 3248 x^{15} + 8514 x^{14} - 19384 x^{13} + 39326 x^{12} - 71194 x^{11} + 118256 x^{10} - 179424 x^{9} + 256621 x^{8} - 336594 x^{7} + 417836 x^{6} - 458653 x^{5} + 468466 x^{4} - 389860 x^{3} + 311630 x^{2} - 163125 x + 96595 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3063157970528898000000000000000=2^{16}\cdot 3^{10}\cdot 5^{15}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{2}{15} a^{10} - \frac{4}{15} a^{8} + \frac{1}{3} a^{7} - \frac{1}{5} a^{6} - \frac{2}{15} a^{5} - \frac{4}{15} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{15} a^{13} + \frac{2}{15} a^{11} - \frac{2}{15} a^{10} + \frac{2}{5} a^{9} + \frac{1}{15} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{4}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{165} a^{14} + \frac{4}{165} a^{13} + \frac{1}{55} a^{11} - \frac{6}{55} a^{10} - \frac{4}{33} a^{9} - \frac{12}{55} a^{8} - \frac{7}{15} a^{7} - \frac{4}{11} a^{6} - \frac{23}{55} a^{5} + \frac{67}{165} a^{4} + \frac{14}{33} a^{3} + \frac{1}{3} a^{2} - \frac{2}{11} a + \frac{14}{33}$, $\frac{1}{825} a^{15} - \frac{16}{825} a^{13} + \frac{14}{825} a^{12} + \frac{23}{275} a^{11} - \frac{1}{33} a^{10} + \frac{34}{75} a^{9} + \frac{23}{825} a^{8} + \frac{358}{825} a^{7} - \frac{9}{275} a^{6} - \frac{113}{275} a^{5} + \frac{11}{25} a^{4} - \frac{1}{165} a^{3} + \frac{38}{165} a^{2} - \frac{10}{33} a - \frac{23}{165}$, $\frac{1}{2475} a^{16} + \frac{1}{2475} a^{15} - \frac{2}{825} a^{14} + \frac{38}{2475} a^{13} - \frac{82}{2475} a^{12} - \frac{4}{275} a^{11} - \frac{326}{2475} a^{10} - \frac{353}{2475} a^{9} - \frac{16}{275} a^{8} + \frac{661}{2475} a^{7} - \frac{746}{2475} a^{6} + \frac{163}{825} a^{5} - \frac{118}{275} a^{4} + \frac{59}{165} a^{3} - \frac{59}{165} a^{2} - \frac{188}{495} a + \frac{7}{495}$, $\frac{1}{2475} a^{17} - \frac{1}{2475} a^{15} - \frac{1}{2475} a^{14} - \frac{2}{75} a^{13} - \frac{7}{495} a^{12} - \frac{1}{225} a^{11} + \frac{101}{825} a^{10} + \frac{1208}{2475} a^{9} + \frac{98}{225} a^{8} + \frac{247}{825} a^{7} + \frac{88}{225} a^{6} + \frac{23}{165} a^{5} - \frac{5}{33} a^{4} + \frac{52}{495} a^{2} + \frac{1}{3} a + \frac{10}{99}$, $\frac{1}{3769577447625} a^{18} - \frac{1}{418841938625} a^{17} - \frac{75945949}{3769577447625} a^{16} + \frac{55233436}{342688858875} a^{15} + \frac{620875972}{1256525815875} a^{14} - \frac{23670832556}{3769577447625} a^{13} - \frac{10796544911}{3769577447625} a^{12} + \frac{133381476688}{1256525815875} a^{11} + \frac{275571548969}{3769577447625} a^{10} + \frac{1856749862584}{3769577447625} a^{9} - \frac{34059778147}{1256525815875} a^{8} - \frac{1463169766621}{3769577447625} a^{7} + \frac{365654295653}{1256525815875} a^{6} + \frac{226882035748}{1256525815875} a^{5} - \frac{122395420607}{1256525815875} a^{4} - \frac{46085843272}{150783097905} a^{3} - \frac{12077032706}{83768387725} a^{2} - \frac{129970758331}{753915489525} a - \frac{71089919378}{251305163175}$, $\frac{1}{2642473790785125} a^{19} + \frac{31}{240224890071375} a^{18} + \frac{97958312912}{880824596928375} a^{17} + \frac{144609384286}{2642473790785125} a^{16} + \frac{1251716302711}{2642473790785125} a^{15} + \frac{927793698323}{880824596928375} a^{14} + \frac{32661061411634}{2642473790785125} a^{13} - \frac{21458910483031}{2642473790785125} a^{12} - \frac{52590179808407}{880824596928375} a^{11} - \frac{61223261857792}{880824596928375} a^{10} - \frac{858769791752146}{2642473790785125} a^{9} - \frac{373454458199327}{880824596928375} a^{8} + \frac{1066111733945729}{2642473790785125} a^{7} - \frac{63870893483394}{293608198976125} a^{6} + \frac{350985275023243}{880824596928375} a^{5} + \frac{10896287885363}{48044978014275} a^{4} + \frac{39360379792511}{528494758157025} a^{3} + \frac{48943540679743}{176164919385675} a^{2} - \frac{89286965776504}{528494758157025} a - \frac{6425944382581}{35232983877135}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7583540.84842 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.136125.2, 5.1.2178000.1 x5, 10.2.23718420000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.2178000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |