Properties

Label 20.0.30616724535...5625.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{34}\cdot 47^{10}$
Root discriminant $105.75$
Ramified primes $5, 47$
Class number $3905275$ (GRH)
Class group $[3905275]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![262135950049, -142233499330, 180301322200, -80639732115, 56364337770, -21196340165, 10592693335, -3388327335, 1328806310, -362840905, 116371456, -26988435, 7198300, -1394755, 309415, -48330, 8770, -1020, 145, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 145*x^18 - 1020*x^17 + 8770*x^16 - 48330*x^15 + 309415*x^14 - 1394755*x^13 + 7198300*x^12 - 26988435*x^11 + 116371456*x^10 - 362840905*x^9 + 1328806310*x^8 - 3388327335*x^7 + 10592693335*x^6 - 21196340165*x^5 + 56364337770*x^4 - 80639732115*x^3 + 180301322200*x^2 - 142233499330*x + 262135950049)
 
gp: K = bnfinit(x^20 - 10*x^19 + 145*x^18 - 1020*x^17 + 8770*x^16 - 48330*x^15 + 309415*x^14 - 1394755*x^13 + 7198300*x^12 - 26988435*x^11 + 116371456*x^10 - 362840905*x^9 + 1328806310*x^8 - 3388327335*x^7 + 10592693335*x^6 - 21196340165*x^5 + 56364337770*x^4 - 80639732115*x^3 + 180301322200*x^2 - 142233499330*x + 262135950049, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 145 x^{18} - 1020 x^{17} + 8770 x^{16} - 48330 x^{15} + 309415 x^{14} - 1394755 x^{13} + 7198300 x^{12} - 26988435 x^{11} + 116371456 x^{10} - 362840905 x^{9} + 1328806310 x^{8} - 3388327335 x^{7} + 10592693335 x^{6} - 21196340165 x^{5} + 56364337770 x^{4} - 80639732115 x^{3} + 180301322200 x^{2} - 142233499330 x + 262135950049 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(30616724535258282558061182498931884765625=5^{34}\cdot 47^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $105.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1175=5^{2}\cdot 47\)
Dirichlet character group:    $\lbrace$$\chi_{1175}(704,·)$, $\chi_{1175}(1,·)$, $\chi_{1175}(706,·)$, $\chi_{1175}(516,·)$, $\chi_{1175}(659,·)$, $\chi_{1175}(469,·)$, $\chi_{1175}(1174,·)$, $\chi_{1175}(471,·)$, $\chi_{1175}(281,·)$, $\chi_{1175}(986,·)$, $\chi_{1175}(424,·)$, $\chi_{1175}(1129,·)$, $\chi_{1175}(234,·)$, $\chi_{1175}(939,·)$, $\chi_{1175}(236,·)$, $\chi_{1175}(941,·)$, $\chi_{1175}(46,·)$, $\chi_{1175}(751,·)$, $\chi_{1175}(189,·)$, $\chi_{1175}(894,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{101} a^{18} + \frac{29}{101} a^{17} - \frac{25}{101} a^{16} - \frac{31}{101} a^{15} - \frac{11}{101} a^{14} - \frac{45}{101} a^{13} - \frac{17}{101} a^{12} - \frac{37}{101} a^{11} - \frac{1}{101} a^{10} - \frac{1}{101} a^{9} + \frac{13}{101} a^{8} - \frac{31}{101} a^{7} - \frac{31}{101} a^{6} - \frac{5}{101} a^{5} + \frac{22}{101} a^{4} - \frac{21}{101} a^{3} - \frac{30}{101} a^{2} - \frac{34}{101} a + \frac{25}{101}$, $\frac{1}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{19} + \frac{20547302750823567907022427638232337274672448818961454692683695228469400}{5773293066649951634657987534574356946591797084075149684344528965836412893} a^{18} + \frac{88735904361597363824451170880279444580142069068979036352683376477185064829}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{17} - \frac{170182527023751460409908958103668765146057171098079526902088719515031556211}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{16} - \frac{70911875396830540543754884266447318343970368363071964703803170283490709590}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{15} - \frac{152803069411903818688203600698031849670116466428307567022554558047024425361}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{14} - \frac{253672782839464467568829289961604845291725701454554352705302846730937910117}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{13} + \frac{250709284748607617694361840457684755050195372134347460600551909704553294659}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{12} + \frac{100175679412704949297726359402422253017412434698225742884711932269028009366}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{11} - \frac{266061347167372247982387307353717891591960937525379099128506859196093621622}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{10} + \frac{46705612336295519366089697337193068855621900852076502302651762341626179370}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{9} + \frac{106529042861696687476983436617987700654243696240640743194763147433281204763}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{8} - \frac{119771121830805298098355386653858570124382258718824598016213969485173766551}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{7} - \frac{5666034114174624069635937033842204924964148184160497528144145466005708793}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{6} + \frac{88783175570306565556403835217666246376936034649971512518090510853781408543}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{5} + \frac{284940885176690586709431026440969265110994265778808290726624959141180180771}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{4} + \frac{187091608759546262084527934377260067978249622052604898430579890051852992161}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{3} + \frac{68232395501348001488233414658632831881252458262283339329102689270871343322}{860220666930842793564040142651579185042177765527197302967334815909625521057} a^{2} - \frac{300294907442246909018361680995484638488854570677689665627044736284403052726}{860220666930842793564040142651579185042177765527197302967334815909625521057} a + \frac{136618415492866100081272075943916645221696796862487331456064258736809958121}{860220666930842793564040142651579185042177765527197302967334815909625521057}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3905275}$, which has order $3905275$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 161406.8376411007 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-235}) \), \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{5}, \sqrt{-47})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.174976354217529296875.3, 10.0.34995270843505859375.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ R ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
47Data not computed