Normalized defining polynomial
\( x^{20} - 3 x^{19} + 17 x^{18} - 44 x^{17} + 237 x^{16} + 112 x^{15} + 1417 x^{14} + 3091 x^{13} + 8100 x^{12} + 12441 x^{11} + 25821 x^{10} + 31124 x^{9} + 39243 x^{8} + 34546 x^{7} + 33143 x^{6} + 13720 x^{5} + 8795 x^{4} - 3477 x^{3} + 603 x^{2} + 583 x + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30606267398122877038604736328125=3^{16}\cdot 5^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{10} - \frac{2}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{11} - \frac{2}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{23412714887599122040378276659540305253116995} a^{19} - \frac{369810402317535074186781640263360976039426}{4682542977519824408075655331908061050623399} a^{18} + \frac{2236297441053485635748274809357165701379147}{23412714887599122040378276659540305253116995} a^{17} - \frac{158127813213291347176674321620456010033637}{2128428626145374730943479696321845932101545} a^{16} + \frac{1324179131111554175001388151236753071187649}{23412714887599122040378276659540305253116995} a^{15} + \frac{1074271762500785735393373120974481413612237}{23412714887599122040378276659540305253116995} a^{14} - \frac{250990339239893669248097703125926900257312}{23412714887599122040378276659540305253116995} a^{13} + \frac{199537350960854465636541215915574086987413}{2128428626145374730943479696321845932101545} a^{12} - \frac{5425321830673682151625313115494295569782146}{23412714887599122040378276659540305253116995} a^{11} + \frac{826255753511639005887266594916597625724734}{2128428626145374730943479696321845932101545} a^{10} - \frac{8889001336664685452595164142693871853520396}{23412714887599122040378276659540305253116995} a^{9} - \frac{1560789894378331376056316809249787776257203}{4682542977519824408075655331908061050623399} a^{8} + \frac{3481818211333565094603631666436766130206476}{23412714887599122040378276659540305253116995} a^{7} + \frac{5025236447345662585219484052427598592878587}{23412714887599122040378276659540305253116995} a^{6} - \frac{751923398394875761683958269153069248639799}{2128428626145374730943479696321845932101545} a^{5} - \frac{430086325376038940054934926879883798947828}{4682542977519824408075655331908061050623399} a^{4} + \frac{1068679729415229571488476741224831729797523}{4682542977519824408075655331908061050623399} a^{3} - \frac{3549500427577271851072300147507700427438903}{23412714887599122040378276659540305253116995} a^{2} + \frac{8905916595351489853915300743966342996860589}{23412714887599122040378276659540305253116995} a + \frac{23902100778864307423400538090376778906798}{2128428626145374730943479696321845932101545}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{44078801084538186904507227989006784617136}{23412714887599122040378276659540305253116995} a^{19} + \frac{142535153910973920262151139445549621793961}{23412714887599122040378276659540305253116995} a^{18} - \frac{776421821921753755943146707131150749719597}{23412714887599122040378276659540305253116995} a^{17} + \frac{38252624342233048856141240772402843139215}{425685725229074946188695939264369186420309} a^{16} - \frac{2167920616439283942721249410393068221943184}{4682542977519824408075655331908061050623399} a^{15} - \frac{2642864850191746886280626262909488846071887}{23412714887599122040378276659540305253116995} a^{14} - \frac{60477528088344285978051517546664518130042478}{23412714887599122040378276659540305253116995} a^{13} - \frac{10993410923285564386570016650102747400793294}{2128428626145374730943479696321845932101545} a^{12} - \frac{64055669875347322588136903543282167024368252}{4682542977519824408075655331908061050623399} a^{11} - \frac{8220407813288836632365379655869161414708982}{425685725229074946188695939264369186420309} a^{10} - \frac{979773210083082097671176901267137006217531203}{23412714887599122040378276659540305253116995} a^{9} - \frac{1057905279600043913587744354077521457886522782}{23412714887599122040378276659540305253116995} a^{8} - \frac{1316522212244622390211555735546773368995536261}{23412714887599122040378276659540305253116995} a^{7} - \frac{200115223246505614699528582679951884148775477}{4682542977519824408075655331908061050623399} a^{6} - \frac{17778886903871998520683337083718462035079985}{425685725229074946188695939264369186420309} a^{5} - \frac{147735804215545032161472547033780755665701617}{23412714887599122040378276659540305253116995} a^{4} - \frac{155307620217398872246892414690625886727047908}{23412714887599122040378276659540305253116995} a^{3} + \frac{282671426954125369903422951213593428107092511}{23412714887599122040378276659540305253116995} a^{2} - \frac{11276117674916946066536476831901564910595017}{4682542977519824408075655331908061050623399} a - \frac{383259390459898999268382436860373046748200}{425685725229074946188695939264369186420309} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16409998.7821 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.5.22244625.1, 10.10.2474116706953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||