Normalized defining polynomial
\( x^{20} - 2 x^{19} - 8 x^{18} + 9 x^{17} + 43 x^{16} - 9 x^{15} - 143 x^{14} - 56 x^{13} + 302 x^{12} + 173 x^{11} - 294 x^{10} - 261 x^{9} + 53 x^{8} + 168 x^{7} + 118 x^{6} + 4 x^{5} - 54 x^{4} - 19 x^{3} + 11 x^{2} + 7 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(305268944861499322564249=83^{6}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{239} a^{18} - \frac{72}{239} a^{17} - \frac{17}{239} a^{16} + \frac{13}{239} a^{15} - \frac{118}{239} a^{14} - \frac{26}{239} a^{13} - \frac{41}{239} a^{12} + \frac{9}{239} a^{11} - \frac{54}{239} a^{10} + \frac{98}{239} a^{9} - \frac{37}{239} a^{8} + \frac{106}{239} a^{7} - \frac{43}{239} a^{6} - \frac{2}{239} a^{5} + \frac{114}{239} a^{4} - \frac{29}{239} a^{3} - \frac{10}{239} a^{2} + \frac{117}{239} a + \frac{8}{239}$, $\frac{1}{73020744592} a^{19} + \frac{16105217}{73020744592} a^{18} + \frac{8362036731}{73020744592} a^{17} - \frac{9247602435}{36510372296} a^{16} + \frac{36350487369}{73020744592} a^{15} - \frac{7368607015}{36510372296} a^{14} - \frac{15347142649}{73020744592} a^{13} - \frac{6685010915}{73020744592} a^{12} - \frac{26479150075}{73020744592} a^{11} + \frac{7190423775}{18255186148} a^{10} + \frac{12646669847}{36510372296} a^{9} + \frac{7879673461}{73020744592} a^{8} + \frac{4850071833}{18255186148} a^{7} - \frac{8040965551}{18255186148} a^{6} - \frac{11218806007}{36510372296} a^{5} - \frac{2085091499}{36510372296} a^{4} - \frac{545679939}{9127593074} a^{3} - \frac{14918731563}{73020744592} a^{2} - \frac{4729353251}{36510372296} a + \frac{23322993813}{73020744592}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4582.04665412 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n669 are not computed |
| Character table for t20n669 is not computed |
Intermediate fields
| 5.5.81589.1, 10.4.552511488443.1, 10.4.552511488443.2, 10.2.6656764921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||