Normalized defining polynomial
\( x^{20} - 6 x^{19} + 35 x^{18} - 136 x^{17} + 507 x^{16} - 1636 x^{15} + 4193 x^{14} - 9518 x^{13} + 16756 x^{12} - 26648 x^{11} + 37971 x^{10} - 87050 x^{9} + 575097 x^{8} - 2617976 x^{7} + 8187004 x^{6} - 18484780 x^{5} + 31602475 x^{4} - 41598580 x^{3} + 40346065 x^{2} - 25841940 x + 8429607 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30368554900942376860763008296271249=7^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{13} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{2} a^{8} - \frac{1}{18} a^{6} - \frac{1}{18} a^{5} - \frac{1}{2} a^{4} + \frac{4}{9} a^{3} + \frac{1}{18} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{4}{9} a^{7} - \frac{1}{2} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{18} a^{2} + \frac{1}{6} a$, $\frac{1}{54} a^{16} - \frac{1}{54} a^{15} + \frac{1}{18} a^{13} + \frac{2}{27} a^{11} + \frac{1}{54} a^{10} - \frac{1}{9} a^{9} + \frac{13}{27} a^{8} - \frac{4}{27} a^{7} - \frac{1}{2} a^{6} + \frac{5}{18} a^{5} + \frac{1}{3} a^{4} - \frac{11}{27} a^{3} - \frac{1}{54} a^{2} + \frac{5}{18} a - \frac{1}{3}$, $\frac{1}{2106} a^{17} + \frac{5}{1053} a^{16} - \frac{11}{2106} a^{15} + \frac{5}{702} a^{14} + \frac{5}{117} a^{13} + \frac{29}{1053} a^{12} + \frac{1}{54} a^{11} + \frac{1}{1053} a^{10} - \frac{110}{1053} a^{9} - \frac{509}{1053} a^{8} - \frac{206}{1053} a^{7} - \frac{53}{702} a^{6} - \frac{103}{234} a^{5} + \frac{797}{2106} a^{4} + \frac{5}{54} a^{3} + \frac{20}{81} a^{2} + \frac{50}{351} a - \frac{73}{234}$, $\frac{1}{8500433058} a^{18} - \frac{239132}{4250216529} a^{17} + \frac{35360027}{8500433058} a^{16} - \frac{50861632}{4250216529} a^{15} - \frac{58603249}{2833477686} a^{14} - \frac{23779465}{4250216529} a^{13} + \frac{550964143}{8500433058} a^{12} - \frac{169380899}{4250216529} a^{11} + \frac{185813267}{4250216529} a^{10} + \frac{1372494115}{8500433058} a^{9} + \frac{1377978193}{8500433058} a^{8} + \frac{326268706}{4250216529} a^{7} + \frac{434274055}{2833477686} a^{6} - \frac{1268020669}{8500433058} a^{5} + \frac{35955623}{274207518} a^{4} + \frac{120159011}{326939733} a^{3} - \frac{323738902}{4250216529} a^{2} - \frac{1188680189}{2833477686} a + \frac{73321553}{944492562}$, $\frac{1}{25864459598761020663095909911885967214486820314} a^{19} + \frac{1399103490615305805717818111710960711}{25864459598761020663095909911885967214486820314} a^{18} + \frac{1351700653536762383532510362995144548937}{6045923234866998752476837286555859563928663} a^{17} + \frac{44914927619392587898968654982667091403459307}{25864459598761020663095909911885967214486820314} a^{16} - \frac{468424808156448945450320281935973103725944421}{25864459598761020663095909911885967214486820314} a^{15} - \frac{215924460173563510029438501439593821025157399}{12932229799380510331547954955942983607243410157} a^{14} + \frac{159663953728647897191919463417738464655782851}{8621486532920340221031969970628655738162273438} a^{13} - \frac{923061502106239139322791939593980090368659375}{12932229799380510331547954955942983607243410157} a^{12} + \frac{104698057257811470656688891286073714219692615}{12932229799380510331547954955942983607243410157} a^{11} - \frac{4903479572361432572562967101597412818003113}{110531878627183848987589358597803278694388121} a^{10} - \frac{25050302155108065046209889568003684068970885}{159657158017043337426517962419049180336338397} a^{9} + \frac{3667025665304238911517290631171259307193601}{1989573815289309281776608454760459016498986178} a^{8} - \frac{504180741667552193045727390621877972156178857}{1124541721685261767960691735299389878890731318} a^{7} - \frac{6232305806039574457512890046823760871057429247}{25864459598761020663095909911885967214486820314} a^{6} - \frac{148420035102606818176873783331998508042599999}{4310743266460170110515984985314327869081136719} a^{5} + \frac{27606801034054414788544607676714192711200257}{994786907644654640888304227380229508249493089} a^{4} + \frac{1047652576883231271985493375900134179786522575}{2873828844306780073677323323542885246054091146} a^{3} - \frac{5382532883104667406447183040077429158055099757}{25864459598761020663095909911885967214486820314} a^{2} + \frac{1205034441990325751745123996037032966472104773}{8621486532920340221031969970628655738162273438} a - \frac{49883868230993143466650301138924686921140256}{110531878627183848987589358597803278694388121}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{78}$, which has order $2106$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-2807}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.174265759404830807.1 x5, 10.0.434577953628007.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||