Normalized defining polynomial
\( x^{20} - 6 x^{19} + 27 x^{18} - 86 x^{17} + 507 x^{16} - 1820 x^{15} + 8948 x^{14} - 26146 x^{13} + 111312 x^{12} - 280194 x^{11} + 1160478 x^{10} - 2525960 x^{9} + 9747738 x^{8} - 17457004 x^{7} + 61342885 x^{6} - 86582502 x^{5} + 268615445 x^{4} - 269621164 x^{3} + 694330259 x^{2} - 373781678 x + 761311783 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(302495446798263449838462018238088740864=2^{30}\cdot 11^{16}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1672=2^{3}\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1672}(1,·)$, $\chi_{1672}(837,·)$, $\chi_{1672}(1633,·)$, $\chi_{1672}(1445,·)$, $\chi_{1672}(1101,·)$, $\chi_{1672}(493,·)$, $\chi_{1672}(533,·)$, $\chi_{1672}(1369,·)$, $\chi_{1672}(265,·)$, $\chi_{1672}(797,·)$, $\chi_{1672}(37,·)$, $\chi_{1672}(609,·)$, $\chi_{1672}(229,·)$, $\chi_{1672}(1329,·)$, $\chi_{1672}(1065,·)$, $\chi_{1672}(685,·)$, $\chi_{1672}(113,·)$, $\chi_{1672}(1521,·)$, $\chi_{1672}(949,·)$, $\chi_{1672}(873,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{27} a^{15} + \frac{1}{3} a^{14} - \frac{10}{27} a^{13} - \frac{4}{9} a^{12} - \frac{5}{27} a^{11} + \frac{1}{3} a^{10} - \frac{8}{27} a^{9} + \frac{5}{27} a^{7} + \frac{1}{3} a^{6} + \frac{13}{27} a^{5} - \frac{4}{27} a^{3} + \frac{1}{9} a^{2} - \frac{13}{27} a - \frac{10}{27}$, $\frac{1}{621} a^{16} + \frac{1}{621} a^{15} - \frac{28}{621} a^{14} - \frac{148}{621} a^{13} - \frac{125}{621} a^{12} - \frac{167}{621} a^{11} - \frac{296}{621} a^{10} + \frac{10}{621} a^{9} - \frac{211}{621} a^{8} - \frac{31}{621} a^{7} + \frac{157}{621} a^{6} + \frac{220}{621} a^{5} + \frac{1}{27} a^{4} - \frac{19}{621} a^{3} - \frac{145}{621} a^{2} - \frac{257}{621} a + \frac{26}{621}$, $\frac{1}{621} a^{17} - \frac{2}{207} a^{15} + \frac{29}{207} a^{14} - \frac{1}{3} a^{13} + \frac{101}{207} a^{12} - \frac{244}{621} a^{11} - \frac{4}{23} a^{10} + \frac{8}{23} a^{9} + \frac{20}{69} a^{8} + \frac{101}{207} a^{7} + \frac{10}{23} a^{6} + \frac{34}{207} a^{5} - \frac{14}{207} a^{4} - \frac{218}{621} a^{3} - \frac{43}{621} a^{2} - \frac{16}{621} a - \frac{256}{621}$, $\frac{1}{20577029120096216751} a^{18} + \frac{4403024537039042}{20577029120096216751} a^{17} + \frac{427538678637040}{762112189633193213} a^{16} - \frac{260321578602677606}{20577029120096216751} a^{15} - \frac{3124845376138467355}{6859009706698738917} a^{14} - \frac{3024064071171763207}{20577029120096216751} a^{13} - \frac{1774305818572271278}{20577029120096216751} a^{12} + \frac{10101015979480334954}{20577029120096216751} a^{11} - \frac{135434716579697030}{298217813334727779} a^{10} + \frac{1793190787158300538}{20577029120096216751} a^{9} + \frac{846210467191172945}{2286336568899579639} a^{8} + \frac{8061263317819372640}{20577029120096216751} a^{7} - \frac{369016843187157100}{762112189633193213} a^{6} - \frac{9439129267264662194}{20577029120096216751} a^{5} + \frac{256838153667324496}{20577029120096216751} a^{4} + \frac{1369681511078302270}{6859009706698738917} a^{3} - \frac{389223496288059611}{2286336568899579639} a^{2} + \frac{4711214019300170789}{20577029120096216751} a + \frac{603646573866540052}{6859009706698738917}$, $\frac{1}{4103330804794573466338334238967915534785189473847} a^{19} - \frac{87804176388316195991868089270}{4103330804794573466338334238967915534785189473847} a^{18} + \frac{139803628126789721910515613414264306737118406}{1367776934931524488779444746322638511595063157949} a^{17} + \frac{1869751353705814068446027232318248848436763344}{4103330804794573466338334238967915534785189473847} a^{16} - \frac{37340051294219820832949943754653517398047961227}{4103330804794573466338334238967915534785189473847} a^{15} - \frac{35203631919389304194805989865699870977156438417}{4103330804794573466338334238967915534785189473847} a^{14} - \frac{1060722202483128936461446362603852322698433821173}{4103330804794573466338334238967915534785189473847} a^{13} - \frac{858483678329828638893731412624360726575247293741}{4103330804794573466338334238967915534785189473847} a^{12} + \frac{2311102659410464189723610735114667102077460892}{20619752787912429479087106728481987611985876753} a^{11} - \frac{968338268505978803170764428479085287088769830776}{4103330804794573466338334238967915534785189473847} a^{10} + \frac{2030139731076178484172942233693857634868424099012}{4103330804794573466338334238967915534785189473847} a^{9} + \frac{1725868330070710613580850078821250277067689898727}{4103330804794573466338334238967915534785189473847} a^{8} - \frac{1364826660531210862892155821734553362437441744072}{4103330804794573466338334238967915534785189473847} a^{7} - \frac{72005380881734183532751771224626563007733430940}{178405687164981455058188445172518066729790846689} a^{6} - \frac{1711423292851565219814145259508329637632453926621}{4103330804794573466338334238967915534785189473847} a^{5} + \frac{1200889866730356216805104872584587956636593648846}{4103330804794573466338334238967915534785189473847} a^{4} + \frac{63429797945692076242529465084466950369010599465}{151975214992391609864382749591404279066118128661} a^{3} + \frac{1847094354755496976480922860273240882782507400058}{4103330804794573466338334238967915534785189473847} a^{2} + \frac{987422688461284106223803258252230806159913467743}{4103330804794573466338334238967915534785189473847} a + \frac{1158761326467978069358564331923523319017082176789}{4103330804794573466338334238967915534785189473847}$
Class group and class number
$C_{209715}$, which has order $209715$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{2}, \sqrt{-19})\), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1, 10.0.530773810885219.1, 10.0.17392396235086856192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 19 | Data not computed | ||||||