Normalized defining polynomial
\( x^{20} - 5 x^{19} + 53 x^{18} - 202 x^{17} + 1266 x^{16} - 3900 x^{15} + 18822 x^{14} - 47783 x^{13} + 192547 x^{12} - 404725 x^{11} + 1398203 x^{10} - 2439278 x^{9} + 7236290 x^{8} - 10416274 x^{7} + 26190577 x^{6} - 30201330 x^{5} + 62910983 x^{4} - 53623372 x^{3} + 89094183 x^{2} - 43814976 x + 53486371 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3021085858887094365354739931640625=5^{10}\cdot 31^{2}\cdot 409^{5}\cdot 167711^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 409, 167711$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{41} a^{18} + \frac{5}{41} a^{17} - \frac{14}{41} a^{16} + \frac{16}{41} a^{15} - \frac{11}{41} a^{14} - \frac{19}{41} a^{13} - \frac{7}{41} a^{12} + \frac{3}{41} a^{11} - \frac{1}{41} a^{10} - \frac{6}{41} a^{9} - \frac{4}{41} a^{8} - \frac{18}{41} a^{7} - \frac{4}{41} a^{6} - \frac{3}{41} a^{5} + \frac{10}{41} a^{4} + \frac{8}{41} a^{3} - \frac{15}{41} a^{2} + \frac{16}{41} a - \frac{18}{41}$, $\frac{1}{26996323760847331975389487777489634792486445036523629657835087} a^{19} + \frac{262139386490205934017541507529434973644168992459434049825648}{26996323760847331975389487777489634792486445036523629657835087} a^{18} + \frac{7172391831022495875190711763296798801595501460036741653575786}{26996323760847331975389487777489634792486445036523629657835087} a^{17} + \frac{875921527414276240645336841568816520954384665186424944227235}{26996323760847331975389487777489634792486445036523629657835087} a^{16} + \frac{4306693209519538507907525508808815049975380304242557961451463}{26996323760847331975389487777489634792486445036523629657835087} a^{15} - \frac{2903235529238526513900668910098710148361619177148422994201852}{26996323760847331975389487777489634792486445036523629657835087} a^{14} - \frac{4229967142257445625162394983119459179248217121052733889410406}{26996323760847331975389487777489634792486445036523629657835087} a^{13} - \frac{11271641147180991899370063642376244463603523202236357362848742}{26996323760847331975389487777489634792486445036523629657835087} a^{12} - \frac{11060136663130380132968217975148097583874813034822827952402280}{26996323760847331975389487777489634792486445036523629657835087} a^{11} - \frac{10916587767379030116639905523372281753900606662917723804184531}{26996323760847331975389487777489634792486445036523629657835087} a^{10} - \frac{7699364369437746830143825245401794104435288001985953618478936}{26996323760847331975389487777489634792486445036523629657835087} a^{9} + \frac{380004357341638619679326616522059561678789552147559096729655}{26996323760847331975389487777489634792486445036523629657835087} a^{8} + \frac{11850695486691037612940596742980055589966814371661513427712411}{26996323760847331975389487777489634792486445036523629657835087} a^{7} + \frac{6731314642723473269751161340664448890134240644783847523782697}{26996323760847331975389487777489634792486445036523629657835087} a^{6} - \frac{7798234782067999452066147721255569135778970610470061514995160}{26996323760847331975389487777489634792486445036523629657835087} a^{5} + \frac{10429190673192720197804243171820765016989355460070260354673659}{26996323760847331975389487777489634792486445036523629657835087} a^{4} + \frac{9026929270804138215307178230734252908098622786783826275405983}{26996323760847331975389487777489634792486445036523629657835087} a^{3} + \frac{4904196353807481916989904543873534903733988298344505797789763}{26996323760847331975389487777489634792486445036523629657835087} a^{2} + \frac{651209477423917242615845649309019424487401817372802826698536}{26996323760847331975389487777489634792486445036523629657835087} a + \frac{1684822465717946904309325267823774684823338329717110891411108}{26996323760847331975389487777489634792486445036523629657835087}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39336445.4795 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.10225.1, 10.6.16247003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 31 | Data not computed | ||||||
| 409 | Data not computed | ||||||
| 167711 | Data not computed | ||||||