Normalized defining polynomial
\( x^{20} - 3 x^{19} + 52 x^{18} - 135 x^{17} + 1247 x^{16} - 2692 x^{15} + 17378 x^{14} - 29493 x^{13} + 153043 x^{12} - 187172 x^{11} + 880244 x^{10} - 628003 x^{9} + 3345087 x^{8} - 451586 x^{7} + 8534495 x^{6} + 4248851 x^{5} + 16216658 x^{4} + 14203125 x^{3} + 27779804 x^{2} + 12803557 x + 35645021 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3021085858887094365354739931640625=5^{10}\cdot 31^{2}\cdot 409^{5}\cdot 167711^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31, 409, 167711$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{101} a^{18} - \frac{11}{101} a^{17} - \frac{24}{101} a^{16} + \frac{43}{101} a^{15} - \frac{9}{101} a^{14} + \frac{24}{101} a^{13} - \frac{23}{101} a^{12} - \frac{16}{101} a^{11} - \frac{11}{101} a^{10} - \frac{34}{101} a^{9} - \frac{16}{101} a^{8} - \frac{38}{101} a^{7} - \frac{34}{101} a^{6} + \frac{25}{101} a^{5} + \frac{18}{101} a^{4} - \frac{19}{101} a^{3} + \frac{25}{101} a^{2} - \frac{13}{101} a$, $\frac{1}{1941492526683626081553446914784196303239988715356740958446263} a^{19} + \frac{7169209258693361607308165688491846210535505673007733510062}{1941492526683626081553446914784196303239988715356740958446263} a^{18} + \frac{47975227037674439938132120447114702695721764202669126761351}{1941492526683626081553446914784196303239988715356740958446263} a^{17} + \frac{192836680106650961976512427016291062631629998415994758861206}{1941492526683626081553446914784196303239988715356740958446263} a^{16} - \frac{47766652664361157180290410310111192778797742270106394917710}{1941492526683626081553446914784196303239988715356740958446263} a^{15} - \frac{494304398607470552259671580643627747443925589807560701623549}{1941492526683626081553446914784196303239988715356740958446263} a^{14} - \frac{915650752552079554215545361869121874833621586896153082633448}{1941492526683626081553446914784196303239988715356740958446263} a^{13} + \frac{104531974507532141822957712306856753085502189777379553594048}{1941492526683626081553446914784196303239988715356740958446263} a^{12} - \frac{513152681927779630019814978741578845123256184565912780025195}{1941492526683626081553446914784196303239988715356740958446263} a^{11} + \frac{939265718249229747794512376232299110541601248760281521140972}{1941492526683626081553446914784196303239988715356740958446263} a^{10} - \frac{65777281233688202698994360812105413181260583029983017608024}{1941492526683626081553446914784196303239988715356740958446263} a^{9} + \frac{838812345522104728206135320751182259998362832889284214012880}{1941492526683626081553446914784196303239988715356740958446263} a^{8} + \frac{797868199784417431797196033776772414544450533252095624923886}{1941492526683626081553446914784196303239988715356740958446263} a^{7} + \frac{43035052514911764065644361765926163107814317898423125642735}{1941492526683626081553446914784196303239988715356740958446263} a^{6} - \frac{654228172027629724426167247022013803448428156055662158308343}{1941492526683626081553446914784196303239988715356740958446263} a^{5} - \frac{470558245327570073681622853684350433448425414791447341206234}{1941492526683626081553446914784196303239988715356740958446263} a^{4} - \frac{771427275282982274333431924816400165802615328544990187654385}{1941492526683626081553446914784196303239988715356740958446263} a^{3} + \frac{945094328533609482237994431674124052654580184388170598789745}{1941492526683626081553446914784196303239988715356740958446263} a^{2} + \frac{576734089531161807471299356154301103295928150535637923268704}{1941492526683626081553446914784196303239988715356740958446263} a - \frac{1773610397514317069794957262598008009362802577843126623467}{19222698283996297837162840740437587160791967478779613449963}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31988778.9557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.10225.1, 10.6.16247003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 409 | Data not computed | ||||||
| 167711 | Data not computed | ||||||