Properties

Label 20.0.30206313154...2896.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 3^{10}\cdot 220873^{2}$
Root discriminant $11.86$
Ramified primes $2, 3, 220873$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T656

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1, 0, -1, -2, 0, -2, 4, -6, 7, -6, 8, -6, 7, -4, 2, -4, 1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + x^18 - 4*x^17 + 2*x^16 - 4*x^15 + 7*x^14 - 6*x^13 + 8*x^12 - 6*x^11 + 7*x^10 - 6*x^9 + 4*x^8 - 2*x^7 - 2*x^5 - x^4 + x^2 + 1)
 
gp: K = bnfinit(x^20 + x^18 - 4*x^17 + 2*x^16 - 4*x^15 + 7*x^14 - 6*x^13 + 8*x^12 - 6*x^11 + 7*x^10 - 6*x^9 + 4*x^8 - 2*x^7 - 2*x^5 - x^4 + x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{20} + x^{18} - 4 x^{17} + 2 x^{16} - 4 x^{15} + 7 x^{14} - 6 x^{13} + 8 x^{12} - 6 x^{11} + 7 x^{10} - 6 x^{9} + 4 x^{8} - 2 x^{7} - 2 x^{5} - x^{4} + x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3020631315406201552896=2^{20}\cdot 3^{10}\cdot 220873^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 220873$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{17} + \frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{1745} a^{19} + \frac{12}{349} a^{18} - \frac{238}{1745} a^{17} + \frac{723}{1745} a^{16} - \frac{592}{1745} a^{15} - \frac{624}{1745} a^{14} - \frac{18}{349} a^{13} - \frac{869}{1745} a^{12} + \frac{567}{1745} a^{11} - \frac{537}{1745} a^{10} - \frac{803}{1745} a^{9} - \frac{373}{1745} a^{8} - \frac{738}{1745} a^{7} + \frac{41}{1745} a^{6} - \frac{332}{1745} a^{5} + \frac{64}{349} a^{4} - \frac{694}{1745} a^{3} + \frac{589}{1745} a^{2} + \frac{158}{349} a - \frac{413}{1745}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{57}{349} a^{19} - \frac{70}{349} a^{18} + \frac{45}{349} a^{17} - \frac{320}{349} a^{16} + \frac{458}{349} a^{15} - \frac{319}{349} a^{14} + \frac{803}{349} a^{13} - \frac{1022}{349} a^{12} + \frac{909}{349} a^{11} - \frac{944}{349} a^{10} + \frac{995}{349} a^{9} - \frac{1019}{349} a^{8} + \frac{512}{349} a^{7} - \frac{106}{349} a^{6} + \frac{271}{349} a^{5} + \frac{92}{349} a^{4} - \frac{121}{349} a^{3} + \frac{418}{349} a^{2} + \frac{9}{349} a - \frac{158}{349} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1171.34610492 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T656:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 57600
The 70 conjugacy class representatives for t20n656 are not computed
Character table for t20n656 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\), 10.0.226173952.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
220873Data not computed