Normalized defining polynomial
\( x^{20} + 143 x^{18} + 7865 x^{16} + 211926 x^{14} + 3007862 x^{12} + 23369489 x^{10} + 103144756 x^{8} + 259191075 x^{6} + 352499862 x^{4} + 224632265 x^{2} + 44926453 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(298413544204512013291051431427069566779392=2^{20}\cdot 11^{18}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(572=2^{2}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{572}(1,·)$, $\chi_{572}(389,·)$, $\chi_{572}(521,·)$, $\chi_{572}(395,·)$, $\chi_{572}(83,·)$, $\chi_{572}(343,·)$, $\chi_{572}(25,·)$, $\chi_{572}(157,·)$, $\chi_{572}(359,·)$, $\chi_{572}(493,·)$, $\chi_{572}(239,·)$, $\chi_{572}(53,·)$, $\chi_{572}(307,·)$, $\chi_{572}(181,·)$, $\chi_{572}(567,·)$, $\chi_{572}(441,·)$, $\chi_{572}(447,·)$, $\chi_{572}(151,·)$, $\chi_{572}(313,·)$, $\chi_{572}(255,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{169} a^{8}$, $\frac{1}{169} a^{9}$, $\frac{1}{5577} a^{10} - \frac{1}{507} a^{8} + \frac{1}{39} a^{6} - \frac{1}{39} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{5577} a^{11} - \frac{1}{507} a^{9} + \frac{1}{39} a^{7} - \frac{1}{39} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{72501} a^{12} - \frac{1}{507} a^{8} + \frac{1}{39} a^{6} + \frac{1}{3}$, $\frac{1}{72501} a^{13} - \frac{1}{507} a^{9} + \frac{1}{39} a^{7} + \frac{1}{3} a$, $\frac{1}{72501} a^{14} - \frac{1}{507} a^{8} - \frac{1}{39} a^{6} + \frac{1}{39} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{72501} a^{15} - \frac{1}{507} a^{9} - \frac{1}{39} a^{7} + \frac{1}{39} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{21677799} a^{16} - \frac{8}{1667523} a^{14} - \frac{1}{151593} a^{12} + \frac{4}{128271} a^{10} - \frac{8}{3887} a^{8} + \frac{10}{897} a^{6} - \frac{1}{299} a^{4} + \frac{3}{23} a^{2} + \frac{5}{69}$, $\frac{1}{21677799} a^{17} - \frac{8}{1667523} a^{15} - \frac{1}{151593} a^{13} + \frac{4}{128271} a^{11} - \frac{8}{3887} a^{9} + \frac{10}{897} a^{7} - \frac{1}{299} a^{5} + \frac{3}{23} a^{3} + \frac{5}{69} a$, $\frac{1}{245154228891} a^{18} + \frac{441}{81718076297} a^{16} - \frac{29804}{18858017607} a^{14} + \frac{2421}{6286005869} a^{12} + \frac{10524}{483538913} a^{10} - \frac{78646}{131874249} a^{8} - \frac{201082}{10144173} a^{6} - \frac{121701}{3381391} a^{4} + \frac{68675}{260107} a^{2} - \frac{10667}{780321}$, $\frac{1}{245154228891} a^{19} + \frac{441}{81718076297} a^{17} - \frac{29804}{18858017607} a^{15} + \frac{2421}{6286005869} a^{13} + \frac{10524}{483538913} a^{11} - \frac{78646}{131874249} a^{9} - \frac{201082}{10144173} a^{7} - \frac{121701}{3381391} a^{5} + \frac{68675}{260107} a^{3} - \frac{10667}{780321} a$
Class group and class number
$C_{2}\times C_{863050}$, which has order $1726100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2015201.7241994622 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.4253392.1, \(\Q(\zeta_{11})^+\), 10.10.79589952003133.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||