Normalized defining polynomial
\( x^{20} - 4 x^{19} + 290 x^{18} - 1024 x^{17} + 38215 x^{16} - 118404 x^{15} + 3009194 x^{14} - 8096720 x^{13} + 156710384 x^{12} - 360471336 x^{11} + 5641661940 x^{10} - 10839365132 x^{9} + 142386950259 x^{8} - 220520041752 x^{7} + 2493011581014 x^{6} - 2934443802712 x^{5} + 29048118383191 x^{4} - 23239353719744 x^{3} + 203877383312922 x^{2} - 83694270864252 x + 656014524319351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2983289065263288625233938941476864000000000000000=2^{55}\cdot 3^{10}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $265.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2640=2^{4}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2640}(1,·)$, $\chi_{2640}(2627,·)$, $\chi_{2640}(961,·)$, $\chi_{2640}(1609,·)$, $\chi_{2640}(203,·)$, $\chi_{2640}(1681,·)$, $\chi_{2640}(467,·)$, $\chi_{2640}(1643,·)$, $\chi_{2640}(1849,·)$, $\chi_{2640}(1369,·)$, $\chi_{2640}(2401,·)$, $\chi_{2640}(2363,·)$, $\chi_{2640}(169,·)$, $\chi_{2640}(683,·)$, $\chi_{2640}(2161,·)$, $\chi_{2640}(947,·)$, $\chi_{2640}(707,·)$, $\chi_{2640}(889,·)$, $\chi_{2640}(1907,·)$, $\chi_{2640}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{12} + \frac{2}{9} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{13} - \frac{1}{9} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{14} - \frac{1}{9} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{911629726107703092577066842729} a^{18} + \frac{12174865354524928291620592534}{911629726107703092577066842729} a^{17} - \frac{15300731719173862225192127332}{911629726107703092577066842729} a^{16} + \frac{12680389100514002625755354696}{303876575369234364192355614243} a^{15} - \frac{141472593619456960387277147773}{911629726107703092577066842729} a^{14} + \frac{131300471906280338326073269675}{911629726107703092577066842729} a^{13} + \frac{12095242995742626338338302874}{911629726107703092577066842729} a^{12} + \frac{135140937007994623109351759942}{911629726107703092577066842729} a^{11} - \frac{121170216831039280496752722932}{911629726107703092577066842729} a^{10} - \frac{424342951412091965367441094504}{911629726107703092577066842729} a^{9} + \frac{127729085974590892521053690260}{303876575369234364192355614243} a^{8} + \frac{31050968505518320228771728228}{101292191789744788064118538081} a^{7} - \frac{49657000149383561606700320077}{303876575369234364192355614243} a^{6} + \frac{97663859908032608921770432769}{303876575369234364192355614243} a^{5} + \frac{150456847897354943000450425247}{303876575369234364192355614243} a^{4} + \frac{380238021289904869949657501447}{911629726107703092577066842729} a^{3} - \frac{382383062667520529612312633977}{911629726107703092577066842729} a^{2} - \frac{203212586403106625502502684562}{911629726107703092577066842729} a - \frac{10581332432512457111586151693}{21200691304830304478536438203}$, $\frac{1}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{19} - \frac{64000861034180157326720923857270644478125}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{18} + \frac{3469571027923080500488080644016698341494022466219413065349273198703711}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{17} - \frac{2349302970029251230785151568310529556827534173221251692611316098892708}{88952600873009131727347975881602515802160277027641592063434751484518803} a^{16} + \frac{33733983800946837257883563597293154395209313984431260513825223202782}{689555045527202571529829270400019502342327728896446450104145360345107} a^{15} + \frac{12005384727387578951778337900531431455043273279526720268905969022183539}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{14} + \frac{310106837690305968057412752791364155234644270246424979139746150743122}{6205995409744823143768463433600175521080949560068018050937308243105963} a^{13} - \frac{26172925115040256236504538665110273465466443185306879460030311990461647}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{12} - \frac{47233200374178224383932337781542336348355591060856608759056706124692}{3982952277895931271373789964847873841887773598252608599855287379903827} a^{11} - \frac{41125123078668779245636393610494332058610370564494914709333798190719422}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{10} - \frac{125638001900814396380429245465549023642069228125302255669687828806347362}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{9} - \frac{38955427182964178958098790677140289330362769521174214741872120095314326}{88952600873009131727347975881602515802160277027641592063434751484518803} a^{8} - \frac{91637703397595597742325593222128123873954336757874276979988951154069}{442550253099547919041532218316430426876419288694734288872809708878203} a^{7} + \frac{18964834799452461679377108196066284940909370207340812288978341507376644}{88952600873009131727347975881602515802160277027641592063434751484518803} a^{6} - \frac{33608003714157158182624027640196668056944323850470564129438597333504884}{88952600873009131727347975881602515802160277027641592063434751484518803} a^{5} + \frac{10923895158569938544243671514523428595718396328585184997484662041567662}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{4} + \frac{128602049066184820542746434196025266059023464920018356328356220703895302}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{3} + \frac{45358552049808839653343352949414123465290408468298042582826310917571169}{266857802619027395182043927644807547406480831082924776190304254453556409} a^{2} + \frac{24307853418160963290884832351566356540642821899354655628132590854907776}{266857802619027395182043927644807547406480831082924776190304254453556409} a - \frac{1660778447676298618045026015966432783900847667757005650107069183358471}{6205995409744823143768463433600175521080949560068018050937308243105963}$
Class group and class number
$C_{2}\times C_{4}\times C_{70338484}$, which has order $562707872$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14452469.589232503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.2304000.2, \(\Q(\zeta_{11})^+\), 10.10.21950349414400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||