Normalized defining polynomial
\( x^{20} - 4 x^{19} + 290 x^{18} - 1024 x^{17} + 34615 x^{16} - 106884 x^{15} + 2127914 x^{14} - 5648720 x^{13} + 67801904 x^{12} - 150084456 x^{11} + 931463700 x^{10} - 1604074892 x^{9} + 2010972339 x^{8} - 1434041112 x^{7} + 21613556694 x^{6} - 30521105752 x^{5} + 56995864951 x^{4} - 44429897024 x^{3} + 154399084602 x^{2} - 86885984892 x + 213029036551 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2983289065263288625233938941476864000000000000000=2^{55}\cdot 3^{10}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $265.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2640=2^{4}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2640}(1,·)$, $\chi_{2640}(323,·)$, $\chi_{2640}(961,·)$, $\chi_{2640}(1609,·)$, $\chi_{2640}(587,·)$, $\chi_{2640}(1681,·)$, $\chi_{2640}(1043,·)$, $\chi_{2640}(1849,·)$, $\chi_{2640}(1307,·)$, $\chi_{2640}(1369,·)$, $\chi_{2640}(2267,·)$, $\chi_{2640}(2401,·)$, $\chi_{2640}(1763,·)$, $\chi_{2640}(169,·)$, $\chi_{2640}(2027,·)$, $\chi_{2640}(2161,·)$, $\chi_{2640}(1523,·)$, $\chi_{2640}(889,·)$, $\chi_{2640}(1787,·)$, $\chi_{2640}(2003,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{9} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{11} + \frac{4}{9} a^{9} - \frac{1}{3} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{12} - \frac{4}{9} a^{9} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{14} + \frac{2}{9} a^{9} + \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{15} + \frac{4}{9} a^{9} + \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{16} + \frac{2}{9} a^{9} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{17} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{5210063937533071076658975714993438249} a^{18} - \frac{407577053151138031458162924931798}{1736687979177690358886325238331146083} a^{17} - \frac{8829002574681751624612626780298376}{5210063937533071076658975714993438249} a^{16} - \frac{8060267772832550910025849865266554}{578895993059230119628775079443715361} a^{15} - \frac{3492290944271543139231676910199883}{578895993059230119628775079443715361} a^{14} - \frac{64201853483248018361038866865415996}{5210063937533071076658975714993438249} a^{13} + \frac{57751866916734887855035363502200355}{5210063937533071076658975714993438249} a^{12} + \frac{79636316994272678506726275243980531}{5210063937533071076658975714993438249} a^{11} - \frac{54494886225233921205543446313399116}{1736687979177690358886325238331146083} a^{10} - \frac{253279170317700822204511324140478393}{578895993059230119628775079443715361} a^{9} + \frac{1157896809818868961059973382355433454}{5210063937533071076658975714993438249} a^{8} + \frac{2349448159828863490561592716655383952}{5210063937533071076658975714993438249} a^{7} - \frac{637689348670353966661949483128724684}{5210063937533071076658975714993438249} a^{6} + \frac{529496433612930619257847513709265200}{5210063937533071076658975714993438249} a^{5} + \frac{194835354402668181029289330057203758}{5210063937533071076658975714993438249} a^{4} + \frac{142736062142145104036814537489401284}{5210063937533071076658975714993438249} a^{3} + \frac{1473227735856736164397245433219911026}{5210063937533071076658975714993438249} a^{2} + \frac{800368747258694503832268647755651384}{5210063937533071076658975714993438249} a - \frac{1724342249171992595649243901615533709}{5210063937533071076658975714993438249}$, $\frac{1}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{19} - \frac{2520161029118376785282213920246432}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{18} - \frac{988337690822885373214402858194721250836524405411724367302637631632834}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{17} + \frac{854076117828105680539282377412740395975172687573382955715724445519617}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{16} - \frac{1162072423870234087225414741680255857903378189458239307884999296551888}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{15} + \frac{529501855229788391656575623209272240671082617301141970723321535359523}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{14} - \frac{129769548342587607569584515323734375635418306775501366587745587753248}{3079794955380168571886154979902638610118406896620571208910109976997361} a^{13} + \frac{110137395046019793398118982503064065815634828538781311536787346711578}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{12} - \frac{99344532232394884548340856887756149241184469807677142321899344891403}{3079794955380168571886154979902638610118406896620571208910109976997361} a^{11} + \frac{24047360676506689185181162416269752122773107736420375428400089932749}{3079794955380168571886154979902638610118406896620571208910109976997361} a^{10} + \frac{710803242162421591131744037127348434584727049877441647860195056599656}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{9} - \frac{7313915666398205389750578866392683753640657672107805683333546511362104}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{8} - \frac{3373264376801181221583691579907129030521054270160883525495607119763508}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{7} - \frac{3341513870369803094308313846671725718949849846417208891557264093986129}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{6} + \frac{5096987364032615194723611856902514286538446286653222970013193338953764}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{5} + \frac{10156330006379264051604422002162031065668230366421745412202995679654302}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{4} - \frac{4248028908278736830689273548450342400756234423000303684673600494412408}{27718154598421517146975394819123747491065662069585140880190989792976249} a^{3} - \frac{3446596195831126700540166901771311161821754606476811073012875466799891}{9239384866140505715658464939707915830355220689861713626730329930992083} a^{2} + \frac{5572363951888913684067360502664511316321203567696208128862282300953421}{27718154598421517146975394819123747491065662069585140880190989792976249} a - \frac{2277398875929165467247425608969198793649529649742641796601650990051208}{27718154598421517146975394819123747491065662069585140880190989792976249}$
Class group and class number
$C_{2}\times C_{2}\times C_{75850084}$, which has order $303400336$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14452469.589232503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.2304000.1, \(\Q(\zeta_{11})^+\), 10.10.21950349414400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||