Normalized defining polynomial
\( x^{20} - 4 x^{19} + 6 x^{18} + 16 x^{17} - 31 x^{16} - 111 x^{15} + 618 x^{14} - 509 x^{13} - 1353 x^{12} + 3273 x^{11} + 5434 x^{10} - 23902 x^{9} + 32513 x^{8} - 6308 x^{7} + 727 x^{6} - 46451 x^{5} + 136687 x^{4} - 185194 x^{3} + 189809 x^{2} - 81196 x + 44944 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(294978023461273318901285601961=83^{6}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{179} a^{18} - \frac{41}{179} a^{17} - \frac{4}{179} a^{16} - \frac{58}{179} a^{15} - \frac{11}{179} a^{14} + \frac{78}{179} a^{13} + \frac{30}{179} a^{12} - \frac{79}{179} a^{11} - \frac{27}{179} a^{10} - \frac{37}{179} a^{9} + \frac{60}{179} a^{8} - \frac{53}{179} a^{7} - \frac{45}{179} a^{6} + \frac{34}{179} a^{5} - \frac{15}{179} a^{4} - \frac{80}{179} a^{3} + \frac{20}{179} a^{2} - \frac{50}{179} a + \frac{19}{179}$, $\frac{1}{28067045590115921063753520315926326474471376211892} a^{19} + \frac{4002091067784848388435326267931604684368978353}{7016761397528980265938380078981581618617844052973} a^{18} + \frac{4650641277805099441262520978308066796475604226231}{14033522795057960531876760157963163237235688105946} a^{17} - \frac{2223845199623258410173629131008316462697076750044}{7016761397528980265938380078981581618617844052973} a^{16} + \frac{9550527339761549351128855021965165258274468799669}{28067045590115921063753520315926326474471376211892} a^{15} - \frac{3909592998284839397666961650846904165383560345023}{28067045590115921063753520315926326474471376211892} a^{14} + \frac{2763793838836302823505311181381486521116050862069}{14033522795057960531876760157963163237235688105946} a^{13} + \frac{13293838356559777414225073640533853262262719604183}{28067045590115921063753520315926326474471376211892} a^{12} + \frac{2205653134310660810946501139338608593625714424323}{28067045590115921063753520315926326474471376211892} a^{11} + \frac{4112198895033999254550969067417683737898405780341}{28067045590115921063753520315926326474471376211892} a^{10} + \frac{3932084153204883577254344613357184007167421078877}{14033522795057960531876760157963163237235688105946} a^{9} + \frac{1399568259255307659097804087004032021505789326259}{14033522795057960531876760157963163237235688105946} a^{8} + \frac{8229059190043430514297374572150969598537103426797}{28067045590115921063753520315926326474471376211892} a^{7} - \frac{2392747785447745455527308671146130161274256595976}{7016761397528980265938380078981581618617844052973} a^{6} - \frac{840333563390439777073289235845805620249838275501}{28067045590115921063753520315926326474471376211892} a^{5} - \frac{11314950184004768005161157499718587126881194217055}{28067045590115921063753520315926326474471376211892} a^{4} - \frac{64012019540619210742870118511712740135444350105}{529566897926715491768934345583515593857950494564} a^{3} + \frac{2449044194685297304231991473945208866394544458361}{14033522795057960531876760157963163237235688105946} a^{2} - \frac{1427860670533586506738552907939238619568957495123}{28067045590115921063753520315926326474471376211892} a + \frac{5993134374036073994342896388199577190553264816}{132391724481678872942233586395878898464487623641}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 997932.91435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n555 are not computed |
| Character table for t20n555 is not computed |
Intermediate fields
| 5.5.81589.1, 10.6.543118793139469.1, 10.2.6656764921.1, 10.2.543118793139469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||