Normalized defining polynomial
\( x^{20} - 6 x^{19} + 35 x^{18} - 119 x^{17} + 210 x^{16} - 229 x^{15} - 424 x^{14} + 2028 x^{13} - 1841 x^{12} - 196 x^{11} + 5682 x^{10} - 13061 x^{9} + 2865 x^{8} + 20268 x^{7} - 31431 x^{6} - 372 x^{5} + 73287 x^{4} - 31560 x^{3} - 64161 x^{2} + 14364 x + 25767 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29305967939737460044866286228851417=3^{32}\cdot 7^{7}\cdot 79^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} + \frac{1}{3} a^{6}$, $\frac{1}{2280611401809202657599654515508375855074139373941} a^{19} - \frac{199561131281032922887805981623348578865313690363}{2280611401809202657599654515508375855074139373941} a^{18} + \frac{331386538927995177130480113336311625681906102839}{2280611401809202657599654515508375855074139373941} a^{17} - \frac{363001634546358189568496038896931043680658672054}{2280611401809202657599654515508375855074139373941} a^{16} + \frac{186114927191714038930705428380183598777843896989}{2280611401809202657599654515508375855074139373941} a^{15} - \frac{45248468309981445689197217241019937773293058798}{2280611401809202657599654515508375855074139373941} a^{14} + \frac{456970055268811371421419611318318079452960895527}{2280611401809202657599654515508375855074139373941} a^{13} - \frac{94945348772360946207568410874916757687301936789}{2280611401809202657599654515508375855074139373941} a^{12} - \frac{791961041071992806722174970473313752832556934019}{2280611401809202657599654515508375855074139373941} a^{11} + \frac{706843956185232421616729231035728788260964428298}{2280611401809202657599654515508375855074139373941} a^{10} + \frac{795429758122408240783915704799308208014228521957}{2280611401809202657599654515508375855074139373941} a^{9} + \frac{114004121910517732862115481045156407746512789465}{2280611401809202657599654515508375855074139373941} a^{8} + \frac{204528105509216530545241006113394099094429400592}{760203800603067552533218171836125285024713124647} a^{7} - \frac{63628306832973025413821466706460023087438386521}{760203800603067552533218171836125285024713124647} a^{6} + \frac{352017895132469793117558855127427046013385446112}{760203800603067552533218171836125285024713124647} a^{5} - \frac{43696247965181198766091556730960298514732369342}{760203800603067552533218171836125285024713124647} a^{4} + \frac{105544446986968280193128406174418617756186719839}{760203800603067552533218171836125285024713124647} a^{3} + \frac{112223203818014417783769842278217282477669731619}{760203800603067552533218171836125285024713124647} a^{2} + \frac{123113027572580562868903401646620022402147581733}{760203800603067552533218171836125285024713124647} a - \frac{8230452132800132745156518886674942257810834922}{760203800603067552533218171836125285024713124647}$
Class group and class number
$C_{4}\times C_{32}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60094247.8731 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 20T65):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| 10.10.7279733310365817.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.5.3 | $x^{3} + 12$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.3.5.3 | $x^{3} + 12$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 79 | Data not computed | ||||||