Normalized defining polynomial
\( x^{20} + 89 x^{18} + 3143 x^{16} + 57696 x^{14} + 614269 x^{12} + 3987509 x^{10} + 16036656 x^{8} + 39505857 x^{6} + 57139676 x^{4} + 44034314 x^{2} + 13845841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2928473537431213109559932677430107439104=2^{20}\cdot 61^{10}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{61} a^{12} + \frac{28}{61} a^{10} - \frac{29}{61} a^{8} - \frac{10}{61} a^{6} - \frac{1}{61} a^{4}$, $\frac{1}{61} a^{13} + \frac{28}{61} a^{11} - \frac{29}{61} a^{9} - \frac{10}{61} a^{7} - \frac{1}{61} a^{5}$, $\frac{1}{61} a^{14} - \frac{20}{61} a^{10} + \frac{9}{61} a^{8} - \frac{26}{61} a^{6} + \frac{28}{61} a^{4}$, $\frac{1}{61} a^{15} - \frac{20}{61} a^{11} + \frac{9}{61} a^{9} - \frac{26}{61} a^{7} + \frac{28}{61} a^{5}$, $\frac{1}{3721} a^{16} + \frac{28}{3721} a^{14} - \frac{29}{3721} a^{12} - \frac{132}{3721} a^{10} - \frac{1282}{3721} a^{8} - \frac{26}{61} a^{6} + \frac{10}{61} a^{4}$, $\frac{1}{3721} a^{17} + \frac{28}{3721} a^{15} - \frac{29}{3721} a^{13} - \frac{132}{3721} a^{11} - \frac{1282}{3721} a^{9} - \frac{26}{61} a^{7} + \frac{10}{61} a^{5}$, $\frac{1}{241471314120486811027} a^{18} + \frac{6926162152558753}{241471314120486811027} a^{16} + \frac{1978396049266840240}{241471314120486811027} a^{14} - \frac{1204663367674420286}{241471314120486811027} a^{12} - \frac{36018364023330196638}{241471314120486811027} a^{10} + \frac{1449316463870807420}{3958546133122734607} a^{8} + \frac{1521523084793368223}{3958546133122734607} a^{6} + \frac{28430279205938803}{64894198903651387} a^{4} - \frac{16783896076491834}{64894198903651387} a^{2} + \frac{444752931934047}{1063839326289367}$, $\frac{1}{241471314120486811027} a^{19} + \frac{6926162152558753}{241471314120486811027} a^{17} + \frac{1978396049266840240}{241471314120486811027} a^{15} - \frac{1204663367674420286}{241471314120486811027} a^{13} - \frac{36018364023330196638}{241471314120486811027} a^{11} + \frac{1449316463870807420}{3958546133122734607} a^{9} + \frac{1521523084793368223}{3958546133122734607} a^{7} + \frac{28430279205938803}{64894198903651387} a^{5} - \frac{16783896076491834}{64894198903651387} a^{3} + \frac{444752931934047}{1063839326289367} a$
Class group and class number
$C_{2}\times C_{2}\times C_{74504}$, which has order $298016$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 780177.561162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 23 conjugacy class representatives for t20n281 |
| Character table for t20n281 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||