Normalized defining polynomial
\( x^{20} - 4 x^{19} + 90 x^{18} - 304 x^{17} + 3530 x^{16} - 10164 x^{15} + 75234 x^{14} - 182040 x^{13} + 886294 x^{12} - 1738516 x^{11} + 5226170 x^{10} - 7761452 x^{9} + 15872079 x^{8} - 20356532 x^{7} + 111075844 x^{6} - 147284512 x^{5} + 246924546 x^{4} - 191903184 x^{3} + 580187432 x^{2} - 317690032 x + 654850801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29133682277961802980800184975360000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(1219,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(911,·)$, $\chi_{1320}(1109,·)$, $\chi_{1320}(71,·)$, $\chi_{1320}(859,·)$, $\chi_{1320}(551,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(619,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(499,·)$, $\chi_{1320}(311,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(379,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{115} a^{14} + \frac{11}{115} a^{13} - \frac{4}{115} a^{12} + \frac{8}{115} a^{11} + \frac{2}{115} a^{10} + \frac{2}{23} a^{9} - \frac{49}{115} a^{8} + \frac{19}{115} a^{7} + \frac{11}{115} a^{6} - \frac{18}{115} a^{5} - \frac{36}{115} a^{4} - \frac{4}{115} a^{3} + \frac{7}{23} a^{2} + \frac{4}{23} a - \frac{52}{115}$, $\frac{1}{115} a^{15} - \frac{2}{23} a^{13} + \frac{6}{115} a^{12} + \frac{6}{115} a^{11} + \frac{11}{115} a^{10} + \frac{5}{23} a^{9} - \frac{8}{23} a^{8} - \frac{37}{115} a^{7} + \frac{9}{23} a^{6} + \frac{24}{115} a^{5} + \frac{1}{115} a^{4} + \frac{56}{115} a^{3} - \frac{43}{115} a^{2} + \frac{27}{115} a + \frac{43}{115}$, $\frac{1}{115} a^{16} + \frac{1}{115} a^{13} - \frac{11}{115} a^{12} - \frac{1}{115} a^{11} - \frac{1}{115} a^{10} - \frac{32}{115} a^{9} - \frac{44}{115} a^{8} + \frac{1}{23} a^{7} - \frac{10}{23} a^{6} + \frac{51}{115} a^{5} - \frac{1}{23} a^{4} + \frac{9}{115} a^{3} + \frac{11}{23} a^{2} - \frac{56}{115} a - \frac{37}{115}$, $\frac{1}{115} a^{17} + \frac{1}{115} a^{13} + \frac{3}{115} a^{12} - \frac{9}{115} a^{11} - \frac{11}{115} a^{10} - \frac{31}{115} a^{9} + \frac{8}{115} a^{8} - \frac{2}{5} a^{7} - \frac{52}{115} a^{6} + \frac{36}{115} a^{5} - \frac{24}{115} a^{4} - \frac{56}{115} a^{3} + \frac{24}{115} a^{2} + \frac{12}{115} a + \frac{6}{115}$, $\frac{1}{128237567379445456460838535} a^{18} - \frac{96344726842495426799748}{128237567379445456460838535} a^{17} + \frac{417919810742276570861286}{128237567379445456460838535} a^{16} + \frac{374414561357235946233439}{128237567379445456460838535} a^{15} + \frac{344578626235328970814253}{128237567379445456460838535} a^{14} - \frac{12191285615551365395508856}{128237567379445456460838535} a^{13} - \frac{10947026465743746614233586}{128237567379445456460838535} a^{12} - \frac{8604316893172474506018396}{128237567379445456460838535} a^{11} - \frac{948852622922640515500791}{128237567379445456460838535} a^{10} + \frac{43275393628385426259045869}{128237567379445456460838535} a^{9} + \frac{41878323065720147393907572}{128237567379445456460838535} a^{8} + \frac{42395401881338320529173822}{128237567379445456460838535} a^{7} - \frac{9619080042629518550764563}{128237567379445456460838535} a^{6} - \frac{619905219827808500049753}{25647513475889091292167707} a^{5} + \frac{62700004504333821986833312}{128237567379445456460838535} a^{4} + \frac{37954471312190862578800008}{128237567379445456460838535} a^{3} - \frac{14231565694222702669502186}{128237567379445456460838535} a^{2} + \frac{41881137675889317604172184}{128237567379445456460838535} a - \frac{20853320196400593814660}{97519062645966126586189}$, $\frac{1}{8397378485568779601424058120496725082521164075741015} a^{19} + \frac{13558505463018166641360457}{8397378485568779601424058120496725082521164075741015} a^{18} + \frac{26570885466217608367874641391257592615636375847006}{8397378485568779601424058120496725082521164075741015} a^{17} - \frac{33365680450602388437274767901001710320649719362922}{8397378485568779601424058120496725082521164075741015} a^{16} + \frac{32322367780585552222672171484874574280047032811511}{8397378485568779601424058120496725082521164075741015} a^{15} - \frac{25034400724418963067546656208484321932806101676494}{8397378485568779601424058120496725082521164075741015} a^{14} - \frac{251680856327989117721802938206799428830018684877209}{8397378485568779601424058120496725082521164075741015} a^{13} - \frac{376058336442163025589109383141738641771587122047009}{8397378485568779601424058120496725082521164075741015} a^{12} + \frac{323318872283544124163915407233805286138250292179199}{8397378485568779601424058120496725082521164075741015} a^{11} - \frac{66473596717502693675890742714563488075338002670681}{1679475697113755920284811624099345016504232815148203} a^{10} + \frac{201703562007909075384609317388609625077193969537484}{8397378485568779601424058120496725082521164075741015} a^{9} - \frac{3849634397634089682937150060991039397974620873700746}{8397378485568779601424058120496725082521164075741015} a^{8} + \frac{878690437925624206089875835681604427940758361264027}{8397378485568779601424058120496725082521164075741015} a^{7} + \frac{338669837472256959135146445187443714435746657116614}{8397378485568779601424058120496725082521164075741015} a^{6} - \frac{3906614303612629000867096020176664947500657098741988}{8397378485568779601424058120496725082521164075741015} a^{5} - \frac{2432996896347061960090586160057307079742612033902143}{8397378485568779601424058120496725082521164075741015} a^{4} + \frac{2934666085604783996308709758358999368249161768474878}{8397378485568779601424058120496725082521164075741015} a^{3} + \frac{935409925540154134651761771174371714238279288110028}{8397378485568779601424058120496725082521164075741015} a^{2} + \frac{1865433515770296250888764838375378361804337170340284}{8397378485568779601424058120496725082521164075741015} a - \frac{2432412168137485177363408967521043357239774586474}{31929195762618933845718852169189068754833323481905}$
Class group and class number
$C_{10}\times C_{102610}$, which has order $1026100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746210.0427691017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{3}, \sqrt{-10})\), \(\Q(\zeta_{11})^+\), 10.0.21950349414400000.4, 10.10.53339349076992.1, 10.0.5333934907699200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |