Normalized defining polynomial
\( x^{20} - 18 x^{18} + 212 x^{16} - 1456 x^{14} + 7264 x^{12} - 22752 x^{10} + 50944 x^{8} - 60032 x^{6} + 48640 x^{4} - 7680 x^{2} + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2913368227796180298080018497536=2^{30}\cdot 3^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(264=2^{3}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{264}(1,·)$, $\chi_{264}(67,·)$, $\chi_{264}(179,·)$, $\chi_{264}(257,·)$, $\chi_{264}(137,·)$, $\chi_{264}(203,·)$, $\chi_{264}(163,·)$, $\chi_{264}(25,·)$, $\chi_{264}(89,·)$, $\chi_{264}(91,·)$, $\chi_{264}(97,·)$, $\chi_{264}(251,·)$, $\chi_{264}(113,·)$, $\chi_{264}(169,·)$, $\chi_{264}(235,·)$, $\chi_{264}(49,·)$, $\chi_{264}(115,·)$, $\chi_{264}(155,·)$, $\chi_{264}(185,·)$, $\chi_{264}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{897049359872} a^{18} + \frac{335285807}{448524679936} a^{16} + \frac{44712727}{224262339968} a^{14} - \frac{57936275}{112131169984} a^{12} + \frac{94779135}{28032792496} a^{10} - \frac{205566055}{28032792496} a^{8} - \frac{35266913}{7008198124} a^{6} - \frac{144739027}{3504099062} a^{4} - \frac{326033502}{1752049531} a^{2} - \frac{96297369}{1752049531}$, $\frac{1}{897049359872} a^{19} + \frac{335285807}{448524679936} a^{17} + \frac{44712727}{224262339968} a^{15} - \frac{57936275}{112131169984} a^{13} + \frac{94779135}{28032792496} a^{11} - \frac{205566055}{28032792496} a^{9} - \frac{35266913}{7008198124} a^{7} - \frac{144739027}{3504099062} a^{5} - \frac{326033502}{1752049531} a^{3} - \frac{96297369}{1752049531} a$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{153716985}{897049359872} a^{18} + \frac{170773799}{56065584992} a^{16} - \frac{8000903505}{224262339968} a^{14} + \frac{27138383201}{112131169984} a^{12} - \frac{33543167157}{28032792496} a^{10} + \frac{51429095339}{14016396248} a^{8} - \frac{113467761887}{14016396248} a^{6} + \frac{63026312027}{7008198124} a^{4} - \frac{13340351098}{1752049531} a^{2} + \frac{2105602296}{1752049531} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5268231.17547 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\zeta_{11})^+\), 10.0.7024111812608.1, 10.0.52089208083.1, 10.10.1706859170463744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |