Normalized defining polynomial
\( x^{20} - 2 x^{19} + 7 x^{18} + 26 x^{17} - 70 x^{16} + 158 x^{15} + 469 x^{14} - 1982 x^{13} + 4033 x^{12} - 1612 x^{11} - 6028 x^{10} + 14984 x^{9} - 10492 x^{8} - 8320 x^{7} + 33296 x^{6} - 47040 x^{5} + 44688 x^{4} - 30336 x^{3} + 15232 x^{2} - 5120 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2913368227796180298080018497536=2^{30}\cdot 3^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} + \frac{1}{18} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{5}{18} a^{2} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{10} - \frac{1}{18} a^{7} + \frac{5}{36} a^{6} + \frac{1}{12} a^{4} + \frac{5}{18} a^{3} + \frac{1}{6} a^{2} + \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{72} a^{13} + \frac{1}{72} a^{11} - \frac{1}{36} a^{8} + \frac{5}{72} a^{7} + \frac{1}{24} a^{5} - \frac{13}{36} a^{4} - \frac{5}{12} a^{3} - \frac{4}{9} a^{2} - \frac{7}{18} a$, $\frac{1}{144} a^{14} + \frac{1}{144} a^{12} + \frac{5}{72} a^{9} + \frac{5}{144} a^{8} - \frac{1}{6} a^{7} - \frac{7}{48} a^{6} - \frac{13}{72} a^{5} + \frac{7}{24} a^{4} - \frac{5}{36} a^{3} - \frac{1}{36} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{144} a^{15} - \frac{1}{144} a^{13} - \frac{1}{72} a^{11} + \frac{5}{72} a^{10} + \frac{5}{144} a^{9} + \frac{1}{36} a^{8} + \frac{17}{144} a^{7} + \frac{11}{72} a^{6} - \frac{1}{12} a^{5} + \frac{2}{9} a^{4} - \frac{5}{18} a^{3} - \frac{2}{9} a^{2} + \frac{1}{18} a - \frac{1}{3}$, $\frac{1}{288} a^{16} - \frac{1}{288} a^{14} - \frac{1}{144} a^{12} - \frac{1}{48} a^{11} + \frac{7}{96} a^{10} + \frac{5}{72} a^{9} + \frac{1}{288} a^{8} - \frac{5}{144} a^{7} - \frac{11}{72} a^{6} + \frac{5}{18} a^{5} + \frac{13}{36} a^{4} + \frac{7}{18} a^{3} - \frac{7}{36} a^{2} - \frac{5}{18} a - \frac{1}{9}$, $\frac{1}{864} a^{17} + \frac{1}{864} a^{16} + \frac{1}{864} a^{15} - \frac{1}{288} a^{14} + \frac{1}{144} a^{12} - \frac{17}{864} a^{11} + \frac{61}{864} a^{10} - \frac{5}{864} a^{9} - \frac{17}{288} a^{8} - \frac{1}{18} a^{7} + \frac{7}{144} a^{6} - \frac{11}{27} a^{5} + \frac{23}{216} a^{4} - \frac{35}{108} a^{3} - \frac{2}{27} a^{2} - \frac{5}{27} a + \frac{4}{27}$, $\frac{1}{238464} a^{18} - \frac{17}{39744} a^{17} - \frac{107}{79488} a^{16} - \frac{113}{119232} a^{15} + \frac{11}{4416} a^{14} - \frac{271}{39744} a^{13} + \frac{205}{238464} a^{12} - \frac{635}{39744} a^{11} + \frac{961}{26496} a^{10} - \frac{541}{14904} a^{9} + \frac{145}{6624} a^{8} + \frac{155}{9936} a^{7} + \frac{389}{59616} a^{6} - \frac{49}{2484} a^{5} - \frac{1}{1656} a^{4} - \frac{265}{828} a^{3} - \frac{1961}{4968} a^{2} + \frac{65}{207} a + \frac{635}{1863}$, $\frac{1}{1070317215197584128} a^{19} - \frac{38884761835}{31479918094046592} a^{18} - \frac{197570772294091}{356772405065861376} a^{17} - \frac{502161184604405}{535158607598792064} a^{16} + \frac{830220264890753}{535158607598792064} a^{15} + \frac{543006647296517}{178386202532930688} a^{14} + \frac{5354894985993373}{1070317215197584128} a^{13} + \frac{3162400085228863}{535158607598792064} a^{12} + \frac{2335331214675187}{356772405065861376} a^{11} - \frac{6270865677276671}{133789651899698016} a^{10} - \frac{6955723438366091}{267579303799396032} a^{9} - \frac{661340468255219}{22298275316616336} a^{8} + \frac{30671786310835445}{267579303799396032} a^{7} + \frac{2986987108629581}{33447412974924504} a^{6} + \frac{1889964669559913}{22298275316616336} a^{5} - \frac{648291508419805}{3716379219436056} a^{4} + \frac{9656058395044375}{22298275316616336} a^{3} + \frac{690644951604113}{5574568829154084} a^{2} + \frac{1732475149384253}{8361853243731126} a - \frac{1232610926398864}{4180926621865563}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{409480952879537}{535158607598792064} a^{19} + \frac{37875422087773}{31479918094046592} a^{18} - \frac{865114627388887}{178386202532930688} a^{17} - \frac{11708058333851869}{535158607598792064} a^{16} + \frac{5899847381939791}{133789651899698016} a^{15} - \frac{1136328791475917}{11149137658308168} a^{14} - \frac{9297553666603501}{23267765547773568} a^{13} + \frac{717975476197849013}{535158607598792064} a^{12} - \frac{19487670070485943}{7755921849257856} a^{11} + \frac{114223997820806759}{535158607598792064} a^{10} + \frac{6642034401318371}{1454235346735848} a^{9} - \frac{419830805751312569}{44596550633232672} a^{8} + \frac{551911637362985477}{133789651899698016} a^{7} + \frac{1017349902802518331}{133789651899698016} a^{6} - \frac{244084805712978685}{11149137658308168} a^{5} + \frac{33118638129474887}{1238793073145352} a^{4} - \frac{265788540198774887}{11149137658308168} a^{3} + \frac{160102196369469401}{11149137658308168} a^{2} - \frac{30892649327449195}{4180926621865563} a + \frac{9930119948685952}{4180926621865563} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4531870.2466 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 5.1.8433216.2 x5, 10.0.1706859170463744.3, 10.2.568953056821248.1 x5, 10.0.213357396307968.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |