Normalized defining polynomial
\( x^{20} - 2 x^{19} + 17 x^{18} - 4 x^{17} + 155 x^{16} - 50 x^{15} + 621 x^{14} - 17 x^{13} + 1572 x^{12} + 87 x^{11} + 2525 x^{10} + 811 x^{9} + 2589 x^{8} + 1042 x^{7} + 1857 x^{6} + 907 x^{5} + 667 x^{4} + 142 x^{3} + 44 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2899386483136048131727057286409=3^{10}\cdot 271^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 271, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{111} a^{18} + \frac{2}{111} a^{17} + \frac{3}{37} a^{16} + \frac{11}{111} a^{14} - \frac{2}{37} a^{13} - \frac{23}{111} a^{12} - \frac{13}{111} a^{11} + \frac{1}{111} a^{10} - \frac{34}{111} a^{9} + \frac{14}{37} a^{8} - \frac{31}{111} a^{7} + \frac{17}{111} a^{6} + \frac{52}{111} a^{5} + \frac{17}{111} a^{4} + \frac{32}{111} a^{3} - \frac{32}{111} a^{2} - \frac{18}{37} a + \frac{7}{111}$, $\frac{1}{7411527900196847938334391} a^{19} + \frac{15308959810148396418986}{7411527900196847938334391} a^{18} - \frac{996442642738484465124185}{2470509300065615979444797} a^{17} + \frac{188173306030995776538117}{2470509300065615979444797} a^{16} + \frac{2658671942963793712164434}{7411527900196847938334391} a^{15} - \frac{719116910131290952230533}{2470509300065615979444797} a^{14} - \frac{424351270831570212291323}{7411527900196847938334391} a^{13} + \frac{3252787165289277274698938}{7411527900196847938334391} a^{12} + \frac{2049357214434909564277090}{7411527900196847938334391} a^{11} - \frac{671311690166169221856238}{7411527900196847938334391} a^{10} + \frac{5518163854193910145302}{2470509300065615979444797} a^{9} - \frac{2579677649250909916842658}{7411527900196847938334391} a^{8} - \frac{1135822883754262038603562}{7411527900196847938334391} a^{7} + \frac{2398642144420698387702925}{7411527900196847938334391} a^{6} - \frac{1973369333318113250904310}{7411527900196847938334391} a^{5} - \frac{3320314652836371210114763}{7411527900196847938334391} a^{4} - \frac{100995383853741132824987}{7411527900196847938334391} a^{3} - \frac{885310877482765181904317}{2470509300065615979444797} a^{2} + \frac{1872625011494413650420247}{7411527900196847938334391} a - \frac{1162209045611573064330719}{2470509300065615979444797}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18922539127555365866711}{200311564870185079414443} a^{19} - \frac{10925366646177723919408}{66770521623395026471481} a^{18} + \frac{311042338376229771871582}{200311564870185079414443} a^{17} + \frac{3750681230505452246982}{66770521623395026471481} a^{16} + \frac{2904435434130755891082088}{200311564870185079414443} a^{15} - \frac{161911907547303732220940}{200311564870185079414443} a^{14} + \frac{11416881686571647310679508}{200311564870185079414443} a^{13} + \frac{939046141140336214437770}{66770521623395026471481} a^{12} + \frac{9776611148450332497703986}{66770521623395026471481} a^{11} + \frac{3168108147347071328416297}{66770521623395026471481} a^{10} + \frac{47322757435032067992584560}{200311564870185079414443} a^{9} + \frac{27796569335106492827355880}{200311564870185079414443} a^{8} + \frac{51562890219100958538472766}{200311564870185079414443} a^{7} + \frac{10668143782548758156878742}{66770521623395026471481} a^{6} + \frac{12863839153585870042556620}{66770521623395026471481} a^{5} + \frac{25570333318733335985041574}{200311564870185079414443} a^{4} + \frac{5274199427352828256805292}{66770521623395026471481} a^{3} + \frac{5438097127584772750641812}{200311564870185079414443} a^{2} + \frac{913107010202296328424254}{200311564870185079414443} a + \frac{123410157810045022530578}{200311564870185079414443} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1302372.67752 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.160801.1, 10.10.21021709781613.1, 10.0.567586164103551.1, 10.0.6283241669043.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 271 | Data not computed | ||||||
| 401 | Data not computed | ||||||