Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 17 x^{17} + 51 x^{16} - 52 x^{15} + 96 x^{14} - 96 x^{13} + 410 x^{12} - 306 x^{11} + 986 x^{10} + 110 x^{9} + 963 x^{8} + 218 x^{7} + 462 x^{6} + 59 x^{5} + 126 x^{4} - 72 x^{3} + 32 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(289632434699042000000000000000=2^{16}\cdot 5^{15}\cdot 3469^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3077966998573138564031821691} a^{19} + \frac{1062081806641096247619842126}{3077966998573138564031821691} a^{18} - \frac{152285087466157205475759029}{3077966998573138564031821691} a^{17} + \frac{239210546917667335394659156}{3077966998573138564031821691} a^{16} + \frac{62330953141383875453478198}{3077966998573138564031821691} a^{15} + \frac{1480680229861509450525247209}{3077966998573138564031821691} a^{14} + \frac{37951675226620570206297602}{3077966998573138564031821691} a^{13} + \frac{3010735759436489144978264}{3077966998573138564031821691} a^{12} - \frac{802538582238616692500262684}{3077966998573138564031821691} a^{11} - \frac{938473788862065763410084687}{3077966998573138564031821691} a^{10} - \frac{424038846131196280332428985}{3077966998573138564031821691} a^{9} + \frac{231497108479981342554351535}{3077966998573138564031821691} a^{8} - \frac{400760873154151549325508058}{3077966998573138564031821691} a^{7} - \frac{1109152252548824445174453803}{3077966998573138564031821691} a^{6} - \frac{1090267545151189241395768950}{3077966998573138564031821691} a^{5} + \frac{418069586552870374181337346}{3077966998573138564031821691} a^{4} - \frac{767803062558669659339296211}{3077966998573138564031821691} a^{3} - \frac{270401247012804339660738221}{3077966998573138564031821691} a^{2} - \frac{963414528995040636141768957}{3077966998573138564031821691} a + \frac{1037652713137098212867728308}{3077966998573138564031821691}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1203104565908224793236193664}{3077966998573138564031821691} a^{19} + \frac{4415513002367227037224273241}{3077966998573138564031821691} a^{18} - \frac{10473961110993488034462416992}{3077966998573138564031821691} a^{17} + \frac{16620014862007669988572045657}{3077966998573138564031821691} a^{16} - \frac{54970060289363437336914195732}{3077966998573138564031821691} a^{15} + \frac{42964884223645089243769385080}{3077966998573138564031821691} a^{14} - \frac{96605373365909500698398685100}{3077966998573138564031821691} a^{13} + \frac{79588266900424581638875535735}{3077966998573138564031821691} a^{12} - \frac{458562565486070814210595907642}{3077966998573138564031821691} a^{11} + \frac{209284282798069359953407037186}{3077966998573138564031821691} a^{10} - \frac{1077903559987066780705970943302}{3077966998573138564031821691} a^{9} - \frac{509369356809538310261880981513}{3077966998573138564031821691} a^{8} - \frac{1234808747659704088807174321796}{3077966998573138564031821691} a^{7} - \frac{636506717280422281161117372845}{3077966998573138564031821691} a^{6} - \frac{663555334280763985750921599392}{3077966998573138564031821691} a^{5} - \frac{252028067672038791272818241293}{3077966998573138564031821691} a^{4} - \frac{178586204309872031577806521510}{3077966998573138564031821691} a^{3} + \frac{44176255265660351161562230711}{3077966998573138564031821691} a^{2} - \frac{9255493036938140331681231228}{3077966998573138564031821691} a + \frac{1030455603024976423645868217}{3077966998573138564031821691} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 828338.933858 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T93):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 3469 | Data not computed | ||||||