Normalized defining polynomial
\( x^{20} - 4 x^{17} + 25 x^{16} - 31 x^{14} - 36 x^{13} + 184 x^{12} + 60 x^{11} - 157 x^{10} - 149 x^{9} + 445 x^{8} - 27 x^{7} - 180 x^{6} + 67 x^{5} + 156 x^{4} + 4 x^{3} - 3 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28937457747213411097802363989=11^{16}\cdot 229^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{704744272659015175733983} a^{19} + \frac{142243865261890776997366}{704744272659015175733983} a^{18} - \frac{42883739625596967685796}{704744272659015175733983} a^{17} + \frac{90419823616967930338258}{704744272659015175733983} a^{16} - \frac{340189657335595815325452}{704744272659015175733983} a^{15} + \frac{89087419552096435771409}{704744272659015175733983} a^{14} - \frac{311018256938396316274890}{704744272659015175733983} a^{13} + \frac{167400922710959000513785}{704744272659015175733983} a^{12} + \frac{46812060642796632046663}{704744272659015175733983} a^{11} - \frac{151587072637686772306168}{704744272659015175733983} a^{10} + \frac{158931728372655276745789}{704744272659015175733983} a^{9} - \frac{217067947154451448431258}{704744272659015175733983} a^{8} - \frac{276209649862013697605058}{704744272659015175733983} a^{7} - \frac{22949777529630424342164}{704744272659015175733983} a^{6} - \frac{113046323806711838991523}{704744272659015175733983} a^{5} + \frac{200686915707621101913755}{704744272659015175733983} a^{4} + \frac{114802820051412838549232}{704744272659015175733983} a^{3} - \frac{191005206406748436001988}{704744272659015175733983} a^{2} - \frac{192165076886442838000504}{704744272659015175733983} a - \frac{151474995571246581498479}{704744272659015175733983}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 957497.704734 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_4$ (as 20T34):
| A solvable group of order 120 |
| The 25 conjugacy class representatives for $C_5\times S_4$ |
| Character table for $C_5\times S_4$ is not computed |
Intermediate fields
| 4.0.229.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | $20$ | R | $20$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 229 | Data not computed | ||||||