Normalized defining polynomial
\( x^{20} - 3 x^{19} + 3 x^{18} - 6 x^{17} + 12 x^{16} - 4 x^{15} - 6 x^{14} + 7 x^{13} - 34 x^{12} + 26 x^{11} + 68 x^{10} - 96 x^{9} + 19 x^{8} + 44 x^{7} - 12 x^{6} + 26 x^{5} + 23 x^{4} + 4 x^{3} + 5 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(288467289442715712890625=3^{10}\cdot 5^{10}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{5} a^{9} + \frac{7}{15} a^{8} - \frac{7}{15} a^{7} + \frac{2}{15} a^{6} + \frac{2}{15} a^{5} - \frac{7}{15} a^{4} - \frac{1}{15} a^{3} + \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{15} a^{15} - \frac{2}{15} a^{13} + \frac{2}{15} a^{12} - \frac{2}{15} a^{11} - \frac{2}{15} a^{10} - \frac{1}{3} a^{9} + \frac{1}{15} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{15} a^{3} + \frac{2}{15} a^{2} + \frac{1}{15} a - \frac{1}{5}$, $\frac{1}{45} a^{16} - \frac{1}{45} a^{15} + \frac{1}{45} a^{14} + \frac{7}{45} a^{13} - \frac{7}{45} a^{12} + \frac{1}{15} a^{11} + \frac{4}{45} a^{10} - \frac{2}{5} a^{9} - \frac{7}{15} a^{8} - \frac{4}{9} a^{7} - \frac{1}{15} a^{6} + \frac{7}{15} a^{5} + \frac{1}{5} a^{4} - \frac{17}{45} a^{3} - \frac{1}{45} a^{2} - \frac{2}{5} a - \frac{8}{45}$, $\frac{1}{45} a^{17} - \frac{1}{45} a^{14} + \frac{2}{15} a^{13} + \frac{1}{9} a^{12} - \frac{2}{45} a^{11} - \frac{1}{9} a^{10} + \frac{2}{5} a^{9} + \frac{1}{45} a^{8} + \frac{2}{9} a^{7} - \frac{2}{5} a^{5} - \frac{1}{9} a^{4} + \frac{2}{15} a^{3} + \frac{11}{45} a^{2} + \frac{16}{45} a - \frac{1}{9}$, $\frac{1}{2025} a^{18} + \frac{19}{2025} a^{17} - \frac{4}{675} a^{16} + \frac{8}{2025} a^{15} - \frac{16}{2025} a^{14} - \frac{7}{81} a^{13} + \frac{34}{675} a^{12} - \frac{274}{2025} a^{11} + \frac{127}{2025} a^{10} - \frac{578}{2025} a^{9} + \frac{536}{2025} a^{8} - \frac{94}{405} a^{7} - \frac{163}{675} a^{6} + \frac{556}{2025} a^{5} + \frac{127}{2025} a^{4} + \frac{347}{2025} a^{3} + \frac{197}{675} a^{2} + \frac{199}{405} a + \frac{487}{2025}$, $\frac{1}{3719925} a^{19} - \frac{64}{3719925} a^{18} + \frac{25951}{3719925} a^{17} - \frac{6871}{3719925} a^{16} - \frac{18676}{743985} a^{15} - \frac{79352}{3719925} a^{14} - \frac{389473}{3719925} a^{13} + \frac{22262}{148797} a^{12} + \frac{4604}{45925} a^{11} - \frac{599629}{3719925} a^{10} - \frac{5017}{16533} a^{9} + \frac{2119}{112725} a^{8} + \frac{771526}{3719925} a^{7} + \frac{772438}{3719925} a^{6} - \frac{859396}{3719925} a^{5} - \frac{594338}{1239975} a^{4} - \frac{221786}{743985} a^{3} - \frac{1832443}{3719925} a^{2} - \frac{121307}{413325} a + \frac{410434}{3719925}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{156544}{743985} a^{19} + \frac{628072}{743985} a^{18} - \frac{910432}{743985} a^{17} + \frac{1316017}{743985} a^{16} - \frac{2764099}{743985} a^{15} + \frac{2407223}{743985} a^{14} + \frac{619618}{743985} a^{13} - \frac{1968806}{743985} a^{12} + \frac{654008}{82665} a^{11} - \frac{9126962}{743985} a^{10} - \frac{281333}{27555} a^{9} + \frac{801974}{22545} a^{8} - \frac{2979599}{148797} a^{7} - \frac{7546483}{743985} a^{6} + \frac{7589557}{743985} a^{5} - \frac{847999}{247995} a^{4} - \frac{29816}{743985} a^{3} + \frac{3297802}{743985} a^{2} + \frac{11239}{82665} a + \frac{721814}{743985} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9642.05211515 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 16 conjugacy class representatives for $D_5^2$ |
| Character table for $D_5^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 10.2.179030503125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.10.8.1 | $x^{10} - 899 x^{5} + 204363$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ |