Normalized defining polynomial
\( x^{20} - 5 x^{19} + 21 x^{18} - 53 x^{17} + 117 x^{16} - 186 x^{15} + 280 x^{14} - 333 x^{13} + 410 x^{12} - 357 x^{11} + 263 x^{10} + 16 x^{9} - 53 x^{8} + 134 x^{7} + 196 x^{6} + 35 x^{5} + 186 x^{4} + 54 x^{3} + 87 x^{2} + 7 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2871772675093161595832481014077=13^{7}\cdot 347^{4}\cdot 1776701^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347, 1776701$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13} a^{15} - \frac{5}{13} a^{14} + \frac{4}{13} a^{13} - \frac{2}{13} a^{12} - \frac{1}{13} a^{11} - \frac{3}{13} a^{10} - \frac{2}{13} a^{9} + \frac{4}{13} a^{7} + \frac{3}{13} a^{6} - \frac{1}{13} a^{5} + \frac{3}{13} a^{4} - \frac{4}{13} a^{3} + \frac{6}{13} a^{2} + \frac{4}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{16} + \frac{5}{13} a^{14} + \frac{5}{13} a^{13} + \frac{2}{13} a^{12} + \frac{5}{13} a^{11} - \frac{4}{13} a^{10} + \frac{3}{13} a^{9} + \frac{4}{13} a^{8} - \frac{3}{13} a^{7} + \frac{1}{13} a^{6} - \frac{2}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} - \frac{5}{13} a^{2} - \frac{3}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{17} + \frac{4}{13} a^{14} - \frac{5}{13} a^{13} + \frac{2}{13} a^{12} + \frac{1}{13} a^{11} + \frac{5}{13} a^{10} + \frac{1}{13} a^{9} - \frac{3}{13} a^{8} - \frac{6}{13} a^{7} - \frac{4}{13} a^{6} + \frac{3}{13} a^{5} - \frac{3}{13} a^{4} + \frac{2}{13} a^{3} + \frac{6}{13} a^{2} - \frac{5}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{18} + \frac{2}{13} a^{14} - \frac{1}{13} a^{13} - \frac{4}{13} a^{12} - \frac{4}{13} a^{11} + \frac{5}{13} a^{9} - \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{4}{13} a^{6} + \frac{1}{13} a^{5} + \frac{3}{13} a^{4} - \frac{4}{13} a^{3} - \frac{3}{13} a^{2} - \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{9346102066869269} a^{19} + \frac{62080574366480}{9346102066869269} a^{18} + \frac{97133186880445}{9346102066869269} a^{17} - \frac{142415617539262}{9346102066869269} a^{16} - \frac{174030168754492}{9346102066869269} a^{15} + \frac{2410661212381780}{9346102066869269} a^{14} - \frac{99114644505126}{718930928220713} a^{13} + \frac{2596434790524931}{9346102066869269} a^{12} - \frac{3337988610383126}{9346102066869269} a^{11} + \frac{4181247164501555}{9346102066869269} a^{10} + \frac{554683505111240}{9346102066869269} a^{9} - \frac{142196745475442}{9346102066869269} a^{8} + \frac{2013519459497241}{9346102066869269} a^{7} - \frac{1385133742729454}{9346102066869269} a^{6} + \frac{1427372298767237}{9346102066869269} a^{5} + \frac{4320473755510424}{9346102066869269} a^{4} - \frac{1266303723539609}{9346102066869269} a^{3} - \frac{1448677862906492}{9346102066869269} a^{2} + \frac{3165276984413173}{9346102066869269} a - \frac{2798247432461038}{9346102066869269}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7799645.32534 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.3.4511.1, 10.2.36154303629821.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 347 | Data not computed | ||||||
| 1776701 | Data not computed | ||||||