Normalized defining polynomial
\( x^{20} - 2 x^{19} + 35 x^{18} - 66 x^{17} + 827 x^{16} - 1282 x^{15} + 14818 x^{14} - 18672 x^{13} + 205958 x^{12} - 205852 x^{11} + 2213089 x^{10} - 1614556 x^{9} + 18065990 x^{8} - 8559240 x^{7} + 108267719 x^{6} - 28741094 x^{5} + 449436464 x^{4} - 55070354 x^{3} + 1158440409 x^{2} - 48899262 x + 1407282031 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28450861599572073223437680640000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(1301,·)$, $\chi_{1320}(889,·)$, $\chi_{1320}(221,·)$, $\chi_{1320}(581,·)$, $\chi_{1320}(289,·)$, $\chi_{1320}(1061,·)$, $\chi_{1320}(169,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(1181,·)$, $\chi_{1320}(49,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{4}{11} a^{14} + \frac{5}{11} a^{13} + \frac{2}{11} a^{12} - \frac{4}{11} a^{11} + \frac{3}{11} a^{9} + \frac{5}{11} a^{8} + \frac{1}{11} a^{7} - \frac{2}{11} a^{6} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} + \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{4}{11} a^{13} - \frac{1}{11} a^{12} + \frac{5}{11} a^{11} + \frac{3}{11} a^{10} + \frac{4}{11} a^{9} + \frac{3}{11} a^{8} + \frac{5}{11} a^{7} - \frac{3}{11} a^{6} - \frac{5}{11} a^{5} - \frac{3}{11} a^{4} + \frac{5}{11} a^{3} - \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{17} + \frac{4}{11} a^{14} - \frac{1}{11} a^{13} + \frac{5}{11} a^{12} + \frac{3}{11} a^{11} + \frac{4}{11} a^{10} + \frac{3}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{11} a^{7} - \frac{5}{11} a^{6} - \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{3}{11} a^{3} - \frac{3}{11} a^{2} - \frac{4}{11} a$, $\frac{1}{3641} a^{18} - \frac{131}{3641} a^{17} + \frac{107}{3641} a^{16} - \frac{90}{3641} a^{15} + \frac{672}{3641} a^{14} + \frac{512}{3641} a^{13} + \frac{615}{3641} a^{12} + \frac{1468}{3641} a^{11} - \frac{1509}{3641} a^{10} - \frac{160}{331} a^{9} + \frac{1261}{3641} a^{8} + \frac{202}{3641} a^{7} + \frac{1333}{3641} a^{6} + \frac{237}{3641} a^{5} + \frac{1625}{3641} a^{4} - \frac{246}{3641} a^{3} - \frac{1632}{3641} a^{2} - \frac{1585}{3641} a + \frac{1469}{3641}$, $\frac{1}{23111652641309955118691787305000428681229311619322198378280275719} a^{19} - \frac{2068566632644877760767177618478446392696949737576934840060805}{23111652641309955118691787305000428681229311619322198378280275719} a^{18} + \frac{742550022281898294338365702374553388724337885707912109942374964}{23111652641309955118691787305000428681229311619322198378280275719} a^{17} + \frac{70159074657176428646943092719736299848447807384438682067999682}{23111652641309955118691787305000428681229311619322198378280275719} a^{16} - \frac{126652852350940206008291937033058022451656590582512527963215068}{23111652641309955118691787305000428681229311619322198378280275719} a^{15} + \frac{10653271571362802204059567731285570884182746303060300140227988630}{23111652641309955118691787305000428681229311619322198378280275719} a^{14} + \frac{1907455662814748229806313482681036529012880708940955062232216333}{23111652641309955118691787305000428681229311619322198378280275719} a^{13} + \frac{7304643381841342457474743415209105785092524713406156881166534394}{23111652641309955118691787305000428681229311619322198378280275719} a^{12} - \frac{10440020099889622960853740914647607137500158998109249649780259746}{23111652641309955118691787305000428681229311619322198378280275719} a^{11} - \frac{6991588362605215001144044493814462826465854753931723004633317582}{23111652641309955118691787305000428681229311619322198378280275719} a^{10} - \frac{6853959154116335057764957552287643536536185810229555934359224209}{23111652641309955118691787305000428681229311619322198378280275719} a^{9} + \frac{1994955393051283410940391102058580771164371617511782584958113157}{23111652641309955118691787305000428681229311619322198378280275719} a^{8} + \frac{3149550552415892176613477010729559839484251266252844764799216391}{23111652641309955118691787305000428681229311619322198378280275719} a^{7} - \frac{5037295014233100479141500881407023365762803281746303122042321201}{23111652641309955118691787305000428681229311619322198378280275719} a^{6} - \frac{6853202891603009746214624465043382422943477768145509575058666907}{23111652641309955118691787305000428681229311619322198378280275719} a^{5} + \frac{688966937887258512785340054625587295797740429025436951000285403}{23111652641309955118691787305000428681229311619322198378280275719} a^{4} - \frac{456657816418954878967050673993182852270380368414030583904245687}{23111652641309955118691787305000428681229311619322198378280275719} a^{3} - \frac{33214108962648112188013663908213277446623303967270005341973677}{116138957996532437782370790477389088850398550850865318483820481} a^{2} + \frac{8209105831939350527575879421253698913954577584078200013201848615}{23111652641309955118691787305000428681229311619322198378280275719} a - \frac{51257318879847212719700133551562760174760946162028257756045465}{116138957996532437782370790477389088850398550850865318483820481}$
Class group and class number
$C_{5}\times C_{5}\times C_{6620}$, which has order $165500$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.1706859170463744.1, 10.0.5333934907699200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |