Normalized defining polynomial
\( x^{20} - 6 x^{19} + 17 x^{18} - 32 x^{17} + 250 x^{16} - 1020 x^{15} + 4412 x^{14} - 11806 x^{13} + 44062 x^{12} - 106082 x^{11} + 423020 x^{10} - 904550 x^{9} + 3284704 x^{8} - 5732304 x^{7} + 18813981 x^{6} - 26215344 x^{5} + 75066884 x^{4} - 75054826 x^{3} + 171978345 x^{2} - 92300794 x + 161255599 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28450861599572073223437680640000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(301,·)$, $\chi_{1320}(1169,·)$, $\chi_{1320}(661,·)$, $\chi_{1320}(1049,·)$, $\chi_{1320}(89,·)$, $\chi_{1320}(929,·)$, $\chi_{1320}(421,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(449,·)$, $\chi_{1320}(181,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(1021,·)$, $\chi_{1320}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{7}{23} a^{11} - \frac{5}{23} a^{10} + \frac{6}{23} a^{9} + \frac{10}{23} a^{8} - \frac{8}{23} a^{7} - \frac{10}{23} a^{6} + \frac{7}{23} a^{5} + \frac{10}{23} a^{4} + \frac{7}{23} a^{3} + \frac{11}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{23} a^{13} - \frac{8}{23} a^{11} - \frac{6}{23} a^{10} + \frac{6}{23} a^{9} - \frac{7}{23} a^{8} + \frac{3}{23} a^{7} + \frac{6}{23} a^{6} - \frac{10}{23} a^{5} + \frac{8}{23} a^{4} - \frac{9}{23} a^{3} - \frac{3}{23} a^{2} - \frac{8}{23} a$, $\frac{1}{23} a^{14} + \frac{7}{23} a^{11} - \frac{11}{23} a^{10} - \frac{5}{23} a^{9} - \frac{9}{23} a^{8} + \frac{11}{23} a^{7} + \frac{2}{23} a^{6} - \frac{5}{23} a^{5} + \frac{2}{23} a^{4} + \frac{7}{23} a^{3} + \frac{11}{23} a^{2} + \frac{4}{23} a$, $\frac{1}{23} a^{15} - \frac{8}{23} a^{11} + \frac{7}{23} a^{10} - \frac{5}{23} a^{9} + \frac{10}{23} a^{8} - \frac{11}{23} a^{7} - \frac{4}{23} a^{6} - \frac{1}{23} a^{5} + \frac{6}{23} a^{4} + \frac{8}{23} a^{3} - \frac{4}{23} a^{2} + \frac{8}{23} a$, $\frac{1}{23} a^{16} - \frac{3}{23} a^{11} + \frac{1}{23} a^{10} - \frac{11}{23} a^{9} + \frac{1}{23} a^{7} + \frac{11}{23} a^{6} - \frac{7}{23} a^{5} - \frac{4}{23} a^{4} + \frac{6}{23} a^{3} + \frac{4}{23} a^{2} + \frac{4}{23} a$, $\frac{1}{4577} a^{17} + \frac{82}{4577} a^{16} + \frac{81}{4577} a^{15} - \frac{73}{4577} a^{14} + \frac{66}{4577} a^{13} + \frac{20}{4577} a^{12} - \frac{71}{199} a^{11} - \frac{450}{4577} a^{10} - \frac{1880}{4577} a^{9} - \frac{558}{4577} a^{8} + \frac{9}{199} a^{7} - \frac{651}{4577} a^{6} - \frac{34}{4577} a^{5} + \frac{1075}{4577} a^{4} + \frac{660}{4577} a^{3} + \frac{1445}{4577} a^{2} - \frac{1845}{4577} a - \frac{24}{199}$, $\frac{1}{2533956268726661263} a^{18} + \frac{97735065721134}{2533956268726661263} a^{17} + \frac{17365585790413140}{2533956268726661263} a^{16} - \frac{22748953271067094}{2533956268726661263} a^{15} - \frac{46121779409509521}{2533956268726661263} a^{14} + \frac{47621338309037061}{2533956268726661263} a^{13} + \frac{14738223461292451}{2533956268726661263} a^{12} - \frac{348480470757442262}{2533956268726661263} a^{11} - \frac{440706259092881726}{2533956268726661263} a^{10} + \frac{238602804780800820}{2533956268726661263} a^{9} - \frac{304454409209284758}{2533956268726661263} a^{8} - \frac{1227500465823411976}{2533956268726661263} a^{7} - \frac{357329832408629451}{2533956268726661263} a^{6} - \frac{764462743984039702}{2533956268726661263} a^{5} + \frac{1067989812199807225}{2533956268726661263} a^{4} + \frac{43515123573000608}{110172011683767881} a^{3} + \frac{476994493890629234}{2533956268726661263} a^{2} - \frac{36393440867150208}{110172011683767881} a - \frac{177832994292175}{4790087464511647}$, $\frac{1}{4485812817263734260981538117680827426904431} a^{19} + \frac{170267395869157194165082}{4485812817263734260981538117680827426904431} a^{18} + \frac{20288857765401304209394242625890758082}{4485812817263734260981538117680827426904431} a^{17} + \frac{12016398997916772564303669892850946105503}{4485812817263734260981538117680827426904431} a^{16} + \frac{30515806845932421805839048903017916544555}{4485812817263734260981538117680827426904431} a^{15} + \frac{55127148639115830139195591293435592129076}{4485812817263734260981538117680827426904431} a^{14} - \frac{330924379019962160561183927273870171099}{22541772951074041512470040792365966969369} a^{13} + \frac{63540652516027951683180959096931089733231}{4485812817263734260981538117680827426904431} a^{12} + \frac{1420884668027327855773469382164798134563265}{4485812817263734260981538117680827426904431} a^{11} - \frac{209959859364610611400103891428483889607770}{4485812817263734260981538117680827426904431} a^{10} + \frac{1251315983252916244756751124307538800786295}{4485812817263734260981538117680827426904431} a^{9} + \frac{1743838455819008818691153773697367924060044}{4485812817263734260981538117680827426904431} a^{8} + \frac{295596957295540537675523616178922783359003}{4485812817263734260981538117680827426904431} a^{7} - \frac{1427500642439508715935749494069918956814146}{4485812817263734260981538117680827426904431} a^{6} - \frac{1307757967491418152618218646512568028594188}{4485812817263734260981538117680827426904431} a^{5} - \frac{426622500574277591704264963600793433312561}{4485812817263734260981538117680827426904431} a^{4} - \frac{1787460231946888650281083910539325685431120}{4485812817263734260981538117680827426904431} a^{3} - \frac{15817171280358285437097095409481728127665}{50402391205210497314399304693043004796679} a^{2} - \frac{24435382550349131259567801847385582582480}{195035339881031924390501657290470757691497} a + \frac{700674603764281678475343699001645431664}{8479797386131822799587028577846554682239}$
Class group and class number
$C_{72820}$, which has order $72820$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.10.7024111812608.1, 10.0.5333934907699200000.1, 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |