Normalized defining polynomial
\( x^{20} - 8 x^{19} + 31 x^{18} - 52 x^{17} - 19 x^{16} + 272 x^{15} - 387 x^{14} - 382 x^{13} + 2195 x^{12} - 2802 x^{11} - 399 x^{10} + 6486 x^{9} - 7787 x^{8} - 164 x^{7} + 13244 x^{6} - 15410 x^{5} + 6096 x^{4} + 4204 x^{3} - 499 x^{2} - 2000 x + 1261 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(281124869512857892173749682176=2^{20}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{117721548251110627537130675021055909} a^{19} + \frac{16343568391056094337297394211701301}{117721548251110627537130675021055909} a^{18} + \frac{10259752713598454891051339542031237}{117721548251110627537130675021055909} a^{17} + \frac{40300867988443320638374614932596742}{117721548251110627537130675021055909} a^{16} + \frac{6876759115148502657806888091578911}{117721548251110627537130675021055909} a^{15} - \frac{8621026240845915208326443976094396}{117721548251110627537130675021055909} a^{14} + \frac{50400507125510512132243600611510637}{117721548251110627537130675021055909} a^{13} - \frac{10644423680513360694738259907223434}{39240516083703542512376891673685303} a^{12} + \frac{3381947122603067650345807835877815}{117721548251110627537130675021055909} a^{11} - \frac{3361687779723736501984294520687381}{39240516083703542512376891673685303} a^{10} + \frac{52437160677729533937795765476765936}{117721548251110627537130675021055909} a^{9} - \frac{51913865549437304124033068225762219}{117721548251110627537130675021055909} a^{8} + \frac{57805393239789913497770531153272079}{117721548251110627537130675021055909} a^{7} - \frac{55213199684707665657240720769830986}{117721548251110627537130675021055909} a^{6} - \frac{47926746619337992970718409094844866}{117721548251110627537130675021055909} a^{5} - \frac{14473878000015920235822766956646342}{39240516083703542512376891673685303} a^{4} - \frac{18867471203307383236729893147673150}{117721548251110627537130675021055909} a^{3} + \frac{14235549383172770722715134390216466}{117721548251110627537130675021055909} a^{2} + \frac{4595333237891517636987379152133201}{39240516083703542512376891673685303} a + \frac{35281732782083077875372462575821379}{117721548251110627537130675021055909}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{526521955045469462}{3288699282057837094567} a^{19} - \frac{1348498056532705413}{3288699282057837094567} a^{18} - \frac{5774044873645154710}{3288699282057837094567} a^{17} + \frac{47019127203922176600}{3288699282057837094567} a^{16} - \frac{93349826685512353097}{3288699282057837094567} a^{15} - \frac{46655033616902389566}{3288699282057837094567} a^{14} + \frac{504224803733019054997}{3288699282057837094567} a^{13} - \frac{582303009834533002037}{3288699282057837094567} a^{12} - \frac{966192113759013003708}{3288699282057837094567} a^{11} + \frac{3284845993886648955566}{3288699282057837094567} a^{10} - \frac{2668290351712220550109}{3288699282057837094567} a^{9} - \frac{3223262477016992183541}{3288699282057837094567} a^{8} + \frac{8634135741473797278491}{3288699282057837094567} a^{7} - \frac{6225038727252858716462}{3288699282057837094567} a^{6} - \frac{7467784252735428321481}{3288699282057837094567} a^{5} + \frac{15306774731749334461063}{3288699282057837094567} a^{4} - \frac{10231396103422571597183}{3288699282057837094567} a^{3} - \frac{4361494375566779909384}{3288699282057837094567} a^{2} - \frac{2828763493194151284127}{3288699282057837094567} a + \frac{1596240156843238032362}{3288699282057837094567} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 951859.395024 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $C_5:D_4$ |
| Character table for $C_5:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.6416.1, 5.5.160801.1, 10.0.26477528679424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 401 | Data not computed | ||||||