Normalized defining polynomial
\( x^{20} - 12 x^{18} + 48 x^{16} - 246 x^{14} + 1830 x^{12} - 5960 x^{10} + 8229 x^{8} - 4878 x^{6} + 3429 x^{4} - 720 x^{2} + 212 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27956717291381500794294870474752=2^{30}\cdot 53^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2932} a^{14} - \frac{77}{1466} a^{12} - \frac{1}{4} a^{11} + \frac{53}{2932} a^{10} + \frac{127}{2932} a^{8} + \frac{355}{2932} a^{6} - \frac{1}{4} a^{5} + \frac{1023}{2932} a^{4} - \frac{1}{4} a^{3} - \frac{169}{2932} a^{2} - \frac{345}{1466}$, $\frac{1}{2932} a^{15} - \frac{77}{1466} a^{13} - \frac{1}{4} a^{12} + \frac{53}{2932} a^{11} + \frac{127}{2932} a^{9} + \frac{355}{2932} a^{7} - \frac{1}{4} a^{6} + \frac{1023}{2932} a^{5} - \frac{1}{4} a^{4} - \frac{169}{2932} a^{3} - \frac{345}{1466} a$, $\frac{1}{2932} a^{16} - \frac{1}{4} a^{13} - \frac{207}{2932} a^{12} - \frac{507}{2932} a^{10} - \frac{611}{2932} a^{8} - \frac{1}{4} a^{7} - \frac{15}{2932} a^{6} - \frac{1}{4} a^{5} - \frac{955}{2932} a^{4} - \frac{82}{733} a^{2} - \frac{177}{733}$, $\frac{1}{2932} a^{17} - \frac{207}{2932} a^{13} + \frac{113}{1466} a^{11} - \frac{1}{4} a^{10} - \frac{611}{2932} a^{9} - \frac{1}{2} a^{8} - \frac{15}{2932} a^{7} - \frac{111}{1466} a^{5} - \frac{1}{4} a^{4} + \frac{405}{2932} a^{3} + \frac{1}{4} a^{2} - \frac{177}{733} a - \frac{1}{2}$, $\frac{1}{49713528932} a^{18} + \frac{1043879}{12428382233} a^{16} - \frac{1640283}{49713528932} a^{14} + \frac{3980237871}{24856764466} a^{12} - \frac{1}{4} a^{11} + \frac{2707873371}{49713528932} a^{10} - \frac{1}{2} a^{9} - \frac{3568187271}{49713528932} a^{8} - \frac{218760315}{24856764466} a^{6} - \frac{1}{4} a^{5} - \frac{10050633069}{49713528932} a^{4} + \frac{1}{4} a^{3} + \frac{9486729415}{24856764466} a^{2} - \frac{1}{2} a - \frac{47766670}{12428382233}$, $\frac{1}{49713528932} a^{19} + \frac{1043879}{12428382233} a^{17} - \frac{1640283}{49713528932} a^{15} + \frac{3980237871}{24856764466} a^{13} - \frac{1}{4} a^{12} + \frac{2707873371}{49713528932} a^{11} - \frac{3568187271}{49713528932} a^{9} - \frac{218760315}{24856764466} a^{7} - \frac{1}{4} a^{6} - \frac{10050633069}{49713528932} a^{5} - \frac{1}{4} a^{4} + \frac{9486729415}{24856764466} a^{3} - \frac{47766670}{12428382233} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2458}{812897} a^{18} - \frac{29555}{812897} a^{16} + \frac{237145}{1625794} a^{14} - \frac{604856}{812897} a^{12} + \frac{8994829}{1625794} a^{10} - \frac{29414491}{1625794} a^{8} + \frac{40301377}{1625794} a^{6} - \frac{20860769}{1625794} a^{4} + \frac{11077117}{1625794} a^{2} - \frac{831656}{812897} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75297483.0313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.3392.1, 5.5.2382032.1, 10.0.22696305796096.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |