Normalized defining polynomial
\( x^{20} - 6 x^{19} + x^{18} + 120 x^{17} - 435 x^{16} - 90 x^{15} + 8221 x^{14} - 47673 x^{13} + 188347 x^{12} - 585015 x^{11} + 1564827 x^{10} - 3594273 x^{9} + 7448650 x^{8} - 13413591 x^{7} + 22178110 x^{6} - 31190787 x^{5} + 40784529 x^{4} - 42150471 x^{3} + 41501494 x^{2} - 25350279 x + 16791547 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2788499543846837793819477624443028601=11^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{6} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{4}{27} a^{11} - \frac{2}{27} a^{10} + \frac{1}{9} a^{9} + \frac{4}{27} a^{8} + \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{1}{27} a^{4} - \frac{4}{27} a^{3} + \frac{11}{27} a^{2} - \frac{2}{27} a + \frac{5}{27}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{12} + \frac{2}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{9} a^{8} - \frac{2}{27} a^{7} - \frac{2}{27} a^{6} - \frac{1}{27} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{10}{27} a^{2} + \frac{7}{27} a - \frac{8}{27}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{15} - \frac{1}{81} a^{14} - \frac{1}{81} a^{12} - \frac{4}{81} a^{11} - \frac{13}{81} a^{10} + \frac{13}{81} a^{9} + \frac{1}{9} a^{8} + \frac{4}{81} a^{7} + \frac{13}{81} a^{6} - \frac{4}{81} a^{5} - \frac{32}{81} a^{4} - \frac{1}{3} a^{3} - \frac{11}{81} a^{2} + \frac{19}{81} a + \frac{38}{81}$, $\frac{1}{81} a^{17} + \frac{1}{81} a^{15} + \frac{1}{81} a^{14} - \frac{1}{81} a^{13} - \frac{1}{27} a^{11} - \frac{4}{81} a^{10} - \frac{1}{81} a^{9} + \frac{13}{81} a^{8} + \frac{1}{27} a^{7} + \frac{4}{81} a^{6} - \frac{31}{81} a^{5} - \frac{4}{81} a^{4} - \frac{20}{81} a^{3} - \frac{1}{3} a^{2} + \frac{40}{81} a + \frac{19}{81}$, $\frac{1}{161109} a^{18} - \frac{19}{3159} a^{17} + \frac{302}{53703} a^{16} + \frac{10}{1377} a^{15} + \frac{35}{17901} a^{14} + \frac{176}{17901} a^{13} - \frac{5801}{161109} a^{12} + \frac{61}{1053} a^{11} + \frac{1322}{53703} a^{10} - \frac{2402}{53703} a^{9} + \frac{443}{17901} a^{8} - \frac{631}{5967} a^{7} - \frac{19262}{161109} a^{6} + \frac{8897}{17901} a^{5} + \frac{23293}{53703} a^{4} - \frac{7507}{17901} a^{3} - \frac{7283}{17901} a^{2} + \frac{898}{4131} a - \frac{77057}{161109}$, $\frac{1}{140291403645290794825489071610217846865365378709} a^{19} + \frac{25861359253125228803801470086432400244039}{15587933738365643869498785734468649651707264301} a^{18} + \frac{216129137641802563896491570699939044344723947}{46763801215096931608496357203405948955121792903} a^{17} - \frac{65565513434506315723752423942131526432706694}{15587933738365643869498785734468649651707264301} a^{16} - \frac{167702248290225814236359193246764797238667937}{15587933738365643869498785734468649651707264301} a^{15} + \frac{229796782427789320288808618733669045728148199}{15587933738365643869498785734468649651707264301} a^{14} + \frac{971084611788867134481758973266100784362314764}{140291403645290794825489071610217846865365378709} a^{13} + \frac{593312906707913082246064977865656492162689258}{46763801215096931608496357203405948955121792903} a^{12} + \frac{6011536676705619744524970435062039879040747074}{46763801215096931608496357203405948955121792903} a^{11} + \frac{3297298310654903198181977348866000528028002738}{46763801215096931608496357203405948955121792903} a^{10} + \frac{36668601884631456671076707330476477691232758}{1199071826028126451499906594959126896285174177} a^{9} + \frac{1989964601390464577267581414728370287201778783}{15587933738365643869498785734468649651707264301} a^{8} + \frac{3001827932329503456996879159128286297770252}{545880948036150952628362146343260104534495637} a^{7} + \frac{7457756470623861661412272725658432589981983775}{46763801215096931608496357203405948955121792903} a^{6} - \frac{10260391258840955371184684720594342574344295701}{46763801215096931608496357203405948955121792903} a^{5} - \frac{6648785675548495305268126816007628141020963584}{15587933738365643869498785734468649651707264301} a^{4} + \frac{2028726376090536953746612196365277912718253103}{15587933738365643869498785734468649651707264301} a^{3} - \frac{427814155243074088726778125364415393421068383}{46763801215096931608496357203405948955121792903} a^{2} - \frac{4943263660178360835355203590178811967186288369}{140291403645290794825489071610217846865365378709} a - \frac{21940820249708242771660955100420470102403781303}{46763801215096931608496357203405948955121792903}$
Class group and class number
$C_{59}\times C_{354}$, which has order $20886$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 795087.603907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), \(\Q(\sqrt{-4411}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{401})\), 5.5.160801.1 x5, 10.10.10368641602001.1, 10.0.1669880098643863051.1 x5, 10.0.4164289522802651.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 401 | Data not computed | ||||||