Normalized defining polynomial
\( x^{20} - 8 x^{18} + 180 x^{16} - 712 x^{14} + 7134 x^{12} - 5112 x^{10} + 15140 x^{8} - 99224 x^{6} + 227145 x^{4} - 91552 x^{2} + 12544 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(278769409858424250725488500146176=2^{20}\cdot 439^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{2}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{1}{16} a^{4} + \frac{1}{16} a^{2}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} + \frac{1}{32} a^{3} + \frac{15}{32} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{6} - \frac{1}{4} a^{3} - \frac{15}{64} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{128} a^{11} - \frac{1}{64} a^{7} + \frac{1}{128} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{256} a^{12} - \frac{1}{256} a^{11} + \frac{3}{128} a^{8} + \frac{1}{128} a^{7} + \frac{1}{32} a^{6} - \frac{1}{16} a^{5} - \frac{7}{256} a^{4} - \frac{1}{256} a^{3} + \frac{15}{32} a^{2} + \frac{1}{16} a - \frac{1}{2}$, $\frac{1}{256} a^{13} - \frac{1}{256} a^{11} - \frac{1}{128} a^{9} + \frac{1}{128} a^{7} - \frac{1}{16} a^{6} - \frac{15}{256} a^{5} - \frac{1}{256} a^{3} + \frac{1}{16} a^{2} + \frac{1}{16} a$, $\frac{1}{512} a^{14} - \frac{1}{512} a^{13} - \frac{1}{512} a^{12} + \frac{1}{512} a^{11} + \frac{1}{256} a^{10} + \frac{1}{256} a^{9} + \frac{1}{256} a^{8} + \frac{7}{256} a^{7} + \frac{25}{512} a^{6} + \frac{15}{512} a^{5} + \frac{63}{512} a^{4} - \frac{15}{512} a^{3} + \frac{57}{128} a^{2} - \frac{1}{32} a + \frac{3}{8}$, $\frac{1}{512} a^{15} + \frac{1}{512} a^{11} - \frac{1}{128} a^{10} - \frac{1}{32} a^{8} + \frac{11}{512} a^{7} + \frac{3}{64} a^{6} - \frac{1}{32} a^{5} - \frac{3}{32} a^{4} - \frac{13}{512} a^{3} - \frac{5}{128} a^{2} + \frac{1}{32} a + \frac{1}{8}$, $\frac{1}{2048} a^{16} - \frac{3}{2048} a^{12} + \frac{3}{2048} a^{8} - \frac{1}{16} a^{6} + \frac{255}{2048} a^{4} - \frac{1}{4} a^{3} + \frac{5}{16} a^{2} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{14336} a^{17} - \frac{3}{3584} a^{15} - \frac{3}{14336} a^{13} - \frac{1}{512} a^{11} - \frac{1}{128} a^{10} - \frac{125}{14336} a^{9} - \frac{1}{32} a^{8} - \frac{89}{3584} a^{7} + \frac{3}{64} a^{6} - \frac{705}{14336} a^{5} - \frac{3}{32} a^{4} - \frac{59}{512} a^{3} - \frac{5}{128} a^{2} - \frac{19}{224} a + \frac{1}{8}$, $\frac{1}{79367011913728} a^{18} + \frac{6558735731}{79367011913728} a^{16} + \frac{46026157125}{79367011913728} a^{14} - \frac{1}{512} a^{13} - \frac{12166573031}{11338144559104} a^{12} - \frac{1}{512} a^{11} + \frac{7974818105}{7215182901248} a^{10} + \frac{1}{256} a^{9} - \frac{1163713941431}{79367011913728} a^{8} - \frac{7}{256} a^{7} + \frac{269477451317}{7215182901248} a^{6} - \frac{17}{512} a^{5} + \frac{140440148355}{11338144559104} a^{4} + \frac{15}{512} a^{3} + \frac{26016066645}{155013695144} a^{2} + \frac{1}{32} a + \frac{10677205789}{44289627184}$, $\frac{1}{158734023827456} a^{19} - \frac{1}{158734023827456} a^{18} + \frac{1022532333}{158734023827456} a^{17} + \frac{32194688055}{158734023827456} a^{16} + \frac{112460597901}{158734023827456} a^{15} + \frac{108987538019}{158734023827456} a^{14} - \frac{223571096167}{158734023827456} a^{13} + \frac{17702776429}{22676289118208} a^{12} - \frac{48393798311}{14430365802496} a^{11} + \frac{20209490103}{14430365802496} a^{10} + \frac{2318557995911}{158734023827456} a^{9} + \frac{3450165944805}{158734023827456} a^{8} + \frac{138621734637}{14430365802496} a^{7} + \frac{308300866947}{14430365802496} a^{6} - \frac{229347505677}{158734023827456} a^{5} - \frac{478148555633}{22676289118208} a^{4} + \frac{1665712744039}{9920876489216} a^{3} - \frac{629400897143}{4960438244608} a^{2} - \frac{99650813839}{310027390288} a + \frac{33612421395}{88579254368}$
Class group and class number
$C_{5}\times C_{75}$, which has order $375$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1562135}{15651155968} a^{19} + \frac{12119549}{15651155968} a^{17} - \frac{278186235}{15651155968} a^{15} + \frac{1044720857}{15651155968} a^{13} - \frac{10880955317}{15651155968} a^{11} + \frac{5355396055}{15651155968} a^{9} - \frac{21984419785}{15651155968} a^{7} + \frac{151275534675}{15651155968} a^{5} - \frac{19705265623}{978197248} a^{3} + \frac{14696877}{3821083} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 299443573.122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{439}) \), \(\Q(\sqrt{-439}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{439})\), 5.5.3083536.1 x5, 10.10.16696389126347776.1, 10.0.4174097281586944.1 x5, 10.0.38032777053184.4 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 439 | Data not computed | ||||||