Normalized defining polynomial
\( x^{20} + 246 x^{18} + 23616 x^{16} + 1142424 x^{14} + 30021840 x^{12} + 433908576 x^{10} + 3338003520 x^{8} + 12636590976 x^{6} + 22036561920 x^{4} + 15287864832 x^{2} + 2479113216 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(278615770255442274940771310275732270781300736=2^{30}\cdot 3^{10}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $166.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(984=2^{3}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{984}(1,·)$, $\chi_{984}(5,·)$, $\chi_{984}(961,·)$, $\chi_{984}(77,·)$, $\chi_{984}(941,·)$, $\chi_{984}(529,·)$, $\chi_{984}(25,·)$, $\chi_{984}(409,·)$, $\chi_{984}(197,·)$, $\chi_{984}(865,·)$, $\chi_{984}(869,·)$, $\chi_{984}(625,·)$, $\chi_{984}(389,·)$, $\chi_{984}(173,·)$, $\chi_{984}(893,·)$, $\chi_{984}(385,·)$, $\chi_{984}(433,·)$, $\chi_{984}(677,·)$, $\chi_{984}(769,·)$, $\chi_{984}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{216} a^{6}$, $\frac{1}{216} a^{7}$, $\frac{1}{3888} a^{8} + \frac{1}{3}$, $\frac{1}{3888} a^{9} + \frac{1}{3} a$, $\frac{1}{23328} a^{10} + \frac{1}{18} a^{2}$, $\frac{1}{23328} a^{11} + \frac{1}{18} a^{3}$, $\frac{1}{139968} a^{12} + \frac{1}{108} a^{4}$, $\frac{1}{139968} a^{13} + \frac{1}{108} a^{5}$, $\frac{1}{839808} a^{14} + \frac{1}{648} a^{6}$, $\frac{1}{839808} a^{15} + \frac{1}{648} a^{7}$, $\frac{1}{1103507712} a^{16} + \frac{1}{10217664} a^{14} + \frac{35}{10217664} a^{12} - \frac{5}{851472} a^{10} + \frac{53}{851472} a^{8} - \frac{17}{3942} a^{4} - \frac{85}{1314} a^{2} - \frac{110}{657}$, $\frac{1}{1103507712} a^{17} + \frac{1}{10217664} a^{15} + \frac{35}{10217664} a^{13} - \frac{5}{851472} a^{11} + \frac{53}{851472} a^{9} - \frac{17}{3942} a^{5} - \frac{85}{1314} a^{3} - \frac{110}{657} a$, $\frac{1}{38884285798636032} a^{18} + \frac{1762651}{6480714299772672} a^{16} + \frac{46604785}{180019841660352} a^{14} - \frac{2294263}{5000551157232} a^{12} - \frac{1915439}{205502102352} a^{10} + \frac{21137090}{312534447327} a^{8} - \frac{281152655}{138904198812} a^{6} + \frac{75059731}{15433799868} a^{4} - \frac{1443614141}{23150699802} a^{2} + \frac{653515540}{3858449967}$, $\frac{1}{38884285798636032} a^{19} + \frac{1762651}{6480714299772672} a^{17} + \frac{46604785}{180019841660352} a^{15} - \frac{2294263}{5000551157232} a^{13} - \frac{1915439}{205502102352} a^{11} + \frac{21137090}{312534447327} a^{9} - \frac{281152655}{138904198812} a^{7} + \frac{75059731}{15433799868} a^{5} - \frac{1443614141}{23150699802} a^{3} + \frac{653515540}{3858449967} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{134644}$, which has order $17234432$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5104264.636551031 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.39698496.3, 5.5.2825761.1, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||