Normalized defining polynomial
\( x^{20} - 3 x^{19} + 16 x^{18} - 32 x^{17} + 110 x^{16} - 153 x^{15} + 358 x^{14} - 206 x^{13} + 553 x^{12} + 106 x^{11} + 758 x^{10} + 946 x^{9} + 724 x^{8} + 664 x^{7} - 58 x^{6} + 66 x^{5} + 161 x^{4} + 205 x^{3} + 190 x^{2} + 50 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(275716983698000000000000000=2^{16}\cdot 5^{15}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{15} a^{16} - \frac{2}{5} a^{13} + \frac{1}{15} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{15} a^{7} - \frac{4}{15} a^{6} - \frac{2}{5} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{4}{15} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{17} - \frac{1}{3} a^{13} + \frac{2}{5} a^{12} - \frac{1}{3} a^{8} - \frac{4}{15} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{15} a^{2} - \frac{1}{3} a$, $\frac{1}{825} a^{18} + \frac{6}{275} a^{17} - \frac{1}{33} a^{16} - \frac{23}{275} a^{15} + \frac{61}{825} a^{14} + \frac{113}{275} a^{13} - \frac{262}{825} a^{12} - \frac{98}{275} a^{11} - \frac{96}{275} a^{10} + \frac{94}{825} a^{9} + \frac{149}{825} a^{8} + \frac{164}{825} a^{7} + \frac{92}{825} a^{6} - \frac{13}{165} a^{5} + \frac{124}{825} a^{4} - \frac{23}{55} a^{3} - \frac{38}{165} a^{2} - \frac{10}{33} a - \frac{10}{33}$, $\frac{1}{417958958729132720153925} a^{19} + \frac{19717085007349435296}{139319652909710906717975} a^{18} - \frac{236353171379196704958}{27863930581942181343595} a^{17} + \frac{12744644379293607045596}{417958958729132720153925} a^{16} - \frac{34858329710354638115189}{417958958729132720153925} a^{15} - \frac{5622658238756447064832}{139319652909710906717975} a^{14} + \frac{1452669547578471816746}{4494182351926158281225} a^{13} + \frac{133835542224862540926626}{417958958729132720153925} a^{12} - \frac{12425928417592721114591}{139319652909710906717975} a^{11} - \frac{22454058784373324832191}{417958958729132720153925} a^{10} - \frac{50836330315818792509866}{417958958729132720153925} a^{9} + \frac{30035958519028410594423}{139319652909710906717975} a^{8} + \frac{37980413229739492771779}{139319652909710906717975} a^{7} + \frac{7935898093297362192658}{83591791745826544030785} a^{6} + \frac{1564090278308497256084}{417958958729132720153925} a^{5} + \frac{2273998223420117452322}{27863930581942181343595} a^{4} - \frac{6372783117414498835219}{27863930581942181343595} a^{3} - \frac{3859872942465488069278}{83591791745826544030785} a^{2} + \frac{1553492492008356870725}{16718358349165308806157} a - \frac{1004892135758930919175}{16718358349165308806157}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72830.9231902 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.21125.1, 5.1.338000.1 x5, 10.2.571220000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.338000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |