Normalized defining polynomial
\( x^{20} - 8 x^{19} + 51 x^{18} - 216 x^{17} + 990 x^{16} - 3670 x^{15} + 15425 x^{14} - 51533 x^{13} + 190246 x^{12} - 551591 x^{11} + 1770300 x^{10} - 4438083 x^{9} + 12400559 x^{8} - 26337315 x^{7} + 62549497 x^{6} - 106576405 x^{5} + 207253409 x^{4} - 256367111 x^{3} + 390090877 x^{2} - 272454303 x + 305078741 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2751180061734552963011647245712890625=5^{10}\cdot 11^{16}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1045=5\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1045}(1,·)$, $\chi_{1045}(324,·)$, $\chi_{1045}(911,·)$, $\chi_{1045}(664,·)$, $\chi_{1045}(531,·)$, $\chi_{1045}(856,·)$, $\chi_{1045}(474,·)$, $\chi_{1045}(476,·)$, $\chi_{1045}(609,·)$, $\chi_{1045}(419,·)$, $\chi_{1045}(229,·)$, $\chi_{1045}(284,·)$, $\chi_{1045}(1006,·)$, $\chi_{1045}(949,·)$, $\chi_{1045}(246,·)$, $\chi_{1045}(951,·)$, $\chi_{1045}(56,·)$, $\chi_{1045}(379,·)$, $\chi_{1045}(894,·)$, $\chi_{1045}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} + \frac{122}{331} a^{17} - \frac{152}{331} a^{16} + \frac{49}{331} a^{15} - \frac{133}{331} a^{14} - \frac{76}{331} a^{13} + \frac{23}{331} a^{12} - \frac{157}{331} a^{11} - \frac{20}{331} a^{10} - \frac{95}{331} a^{9} - \frac{132}{331} a^{8} + \frac{92}{331} a^{7} - \frac{51}{331} a^{6} + \frac{133}{331} a^{5} + \frac{162}{331} a^{4} + \frac{70}{331} a^{3} + \frac{24}{331} a^{2} + \frac{140}{331} a - \frac{138}{331}$, $\frac{1}{60558333527414422040831672375739546536135035717226921491094476589} a^{19} + \frac{89758611858847686891130195819603720814383757670590451502279048}{60558333527414422040831672375739546536135035717226921491094476589} a^{18} - \frac{14977711735227043935071303554491680140701701816175649139239221989}{60558333527414422040831672375739546536135035717226921491094476589} a^{17} + \frac{1039825407608821401873271460750923151167879069747634526497482349}{60558333527414422040831672375739546536135035717226921491094476589} a^{16} + \frac{23385877042182212960478279525712827316565773187793298162926751181}{60558333527414422040831672375739546536135035717226921491094476589} a^{15} + \frac{4654362270548963843040021819023066212407735298145263297003673684}{60558333527414422040831672375739546536135035717226921491094476589} a^{14} - \frac{191214989943403960620790327677382627913443274309325896656879703}{462277355171102458326959331112515622413244547459747492298431119} a^{13} - \frac{27686068756982621505118126970065877474484700273399957084329114724}{60558333527414422040831672375739546536135035717226921491094476589} a^{12} + \frac{16116623662321936625136230371576414344360932941731777503064259998}{60558333527414422040831672375739546536135035717226921491094476589} a^{11} + \frac{22714091965172163298722911082426946365547927112598850520256572971}{60558333527414422040831672375739546536135035717226921491094476589} a^{10} + \frac{29457945405020410794473891893595688636241512561230839283728907955}{60558333527414422040831672375739546536135035717226921491094476589} a^{9} - \frac{69152856336430844945478748137938238039072457950781047553675053}{182955690415149311301606260953895910985302222710655351936841319} a^{8} + \frac{29591501999004210966128923916497177939700543780133637033743743156}{60558333527414422040831672375739546536135035717226921491094476589} a^{7} - \frac{17084363668602977528510418876502227735961878079990750773486116273}{60558333527414422040831672375739546536135035717226921491094476589} a^{6} + \frac{5225064048018982266927912669773942883373502437432824915730546064}{60558333527414422040831672375739546536135035717226921491094476589} a^{5} + \frac{27947635300269218603183405296406715035866999398329830918735859371}{60558333527414422040831672375739546536135035717226921491094476589} a^{4} - \frac{11521619924816251355473854855646515475513042632596403781075815647}{60558333527414422040831672375739546536135035717226921491094476589} a^{3} - \frac{5303800085351994095013915736294849240824674385079007465541968124}{60558333527414422040831672375739546536135035717226921491094476589} a^{2} - \frac{15573910029515770721084176924783792607025831525870276986201107387}{60558333527414422040831672375739546536135035717226921491094476589} a - \frac{111488699609577636716092479318715896299773112722426662512527019}{304313233806102623320762172742409781588618269935813675834645611}$
Class group and class number
$C_{5}\times C_{9020}$, which has order $45100$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{5}, \sqrt{-19})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.1658668159016309375.3, 10.0.530773810885219.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $19$ | 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |