Normalized defining polynomial
\( x^{20} - 6 x^{19} + 14 x^{18} - 12 x^{17} - 48 x^{16} + 60 x^{15} - 132 x^{14} + 951 x^{13} - 267 x^{12} + 744 x^{11} + 1077 x^{10} - 6060 x^{9} + 9858 x^{8} + 1950 x^{7} + 21891 x^{6} + 1167 x^{5} + 38958 x^{4} - 6303 x^{3} - 4030 x^{2} + 759 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27460473324661212646782041015625=3^{20}\cdot 5^{10}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{2}{9} a^{10} + \frac{1}{9} a^{8} + \frac{4}{9} a^{6} + \frac{4}{9} a^{4} + \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{621} a^{17} - \frac{10}{621} a^{16} - \frac{5}{621} a^{15} + \frac{1}{27} a^{14} - \frac{29}{621} a^{13} + \frac{38}{621} a^{12} + \frac{70}{621} a^{11} - \frac{7}{621} a^{10} - \frac{275}{621} a^{9} - \frac{112}{621} a^{8} + \frac{109}{621} a^{7} + \frac{89}{621} a^{6} - \frac{149}{621} a^{5} + \frac{239}{621} a^{4} - \frac{266}{621} a^{3} - \frac{94}{621} a^{2} + \frac{58}{621} a + \frac{1}{27}$, $\frac{1}{9789462009} a^{18} - \frac{4086944}{9789462009} a^{17} - \frac{400082893}{9789462009} a^{16} + \frac{96899734}{9789462009} a^{15} + \frac{493883939}{9789462009} a^{14} - \frac{1479441320}{9789462009} a^{13} + \frac{785530070}{9789462009} a^{12} - \frac{3562510367}{9789462009} a^{11} - \frac{3828317995}{9789462009} a^{10} + \frac{2529207451}{9789462009} a^{9} + \frac{2926856453}{9789462009} a^{8} - \frac{428536976}{9789462009} a^{7} - \frac{22136491}{9789462009} a^{6} + \frac{99205586}{425628783} a^{5} - \frac{2509903948}{9789462009} a^{4} + \frac{1160974360}{9789462009} a^{3} - \frac{834105808}{9789462009} a^{2} - \frac{4740673529}{9789462009} a - \frac{64786261}{425628783}$, $\frac{1}{2394323691246303277106570085490941} a^{19} - \frac{102947304834661064198599}{2394323691246303277106570085490941} a^{18} - \frac{94145452432113112457400612169}{798107897082101092368856695163647} a^{17} + \frac{5410449908000217113804598983120}{266035965694033697456285565054549} a^{16} - \frac{17420936895046597070459489238850}{798107897082101092368856695163647} a^{15} + \frac{8187793952771831129989357155436}{88678655231344565818761855018183} a^{14} - \frac{34712836733336221346945463261242}{798107897082101092368856695163647} a^{13} - \frac{721083235240912777293475145515}{34700343351395699668211160659289} a^{12} - \frac{96758711119714705259545731988364}{266035965694033697456285565054549} a^{11} + \frac{343104575967720356642919536321225}{798107897082101092368856695163647} a^{10} + \frac{23567884685274924596379847466627}{266035965694033697456285565054549} a^{9} + \frac{107646008621063887044394291035548}{798107897082101092368856695163647} a^{8} + \frac{215865001079187712356244882033235}{798107897082101092368856695163647} a^{7} - \frac{129160967424454948328326349502485}{266035965694033697456285565054549} a^{6} + \frac{206474424675660512337913684470373}{798107897082101092368856695163647} a^{5} + \frac{324929225697098738530552905489043}{798107897082101092368856695163647} a^{4} - \frac{107793318126649205998983544899737}{798107897082101092368856695163647} a^{3} + \frac{275902567327959412503558212504791}{798107897082101092368856695163647} a^{2} - \frac{1196457924381125390107822492490017}{2394323691246303277106570085490941} a + \frac{50225118282808822510004411157101}{104101030054187099004633481977867}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19124807905200074475961}{151885263040705093672852929} a^{19} - \frac{145345892551045829802763}{151885263040705093672852929} a^{18} + \frac{149791700093479414666231}{50628421013568364557617643} a^{17} - \frac{216767392023838043454842}{50628421013568364557617643} a^{16} - \frac{184398864451116121681031}{50628421013568364557617643} a^{15} + \frac{862772640090463577990728}{50628421013568364557617643} a^{14} - \frac{473323049436260816135600}{16876140337856121519205881} a^{13} + \frac{7473059351011799103969086}{50628421013568364557617643} a^{12} - \frac{11441655208628541105830101}{50628421013568364557617643} a^{11} + \frac{2323133908640709830859703}{16876140337856121519205881} a^{10} - \frac{1822794416548173487773514}{50628421013568364557617643} a^{9} - \frac{16645709043511061796223121}{16876140337856121519205881} a^{8} + \frac{125127206448854849793448057}{50628421013568364557617643} a^{7} - \frac{87005364466346565062186135}{50628421013568364557617643} a^{6} + \frac{40918090803283873046464501}{16876140337856121519205881} a^{5} - \frac{230157078817131298476711841}{50628421013568364557617643} a^{4} + \frac{71337903895072008925982366}{16876140337856121519205881} a^{3} - \frac{445781342811792935808108868}{50628421013568364557617643} a^{2} + \frac{63361603728851183509424693}{151885263040705093672852929} a + \frac{6381023902766987114349266}{6603707088726308420558823} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29938408.0708 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.10791225.1, 10.2.5240274165028125.1, 10.0.349351611001875.1, 10.8.1746758055009375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |