Normalized defining polynomial
\( x^{20} - 6 x^{19} + 22 x^{18} - 30 x^{17} + 44 x^{16} - 30 x^{15} + 152 x^{14} - 494 x^{13} + 653 x^{12} + 346 x^{11} + 3920 x^{10} + 682 x^{9} + 6983 x^{8} + 1398 x^{7} + 82 x^{6} + 4408 x^{5} + 4555 x^{4} - 260 x^{3} - 726 x^{2} + 742 x + 359 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(274167030311132856320000000000000=2^{30}\cdot 5^{13}\cdot 3803^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3803$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47788527625334045521979230178656288729578205} a^{19} - \frac{21918984253538552282781297575534009657935878}{47788527625334045521979230178656288729578205} a^{18} - \frac{4533582354050217919422368938796697568812772}{47788527625334045521979230178656288729578205} a^{17} + \frac{22785994647663946976440361902815009224533424}{47788527625334045521979230178656288729578205} a^{16} + \frac{12024887157306238567035991676138087361752991}{47788527625334045521979230178656288729578205} a^{15} + \frac{1308856007945396655258617912269526479013058}{47788527625334045521979230178656288729578205} a^{14} + \frac{20572685873568423608369154236114348562555581}{47788527625334045521979230178656288729578205} a^{13} - \frac{16096236946004356698278580840132250630875081}{47788527625334045521979230178656288729578205} a^{12} - \frac{2760179226198390172945184517881885060096723}{9557705525066809104395846035731257745915641} a^{11} + \frac{202368734962776235414895953755939775070186}{47788527625334045521979230178656288729578205} a^{10} + \frac{2026107705146451591623391000693674769839123}{47788527625334045521979230178656288729578205} a^{9} - \frac{22716574494534294920556951817165836660054329}{47788527625334045521979230178656288729578205} a^{8} + \frac{20953267975203768968750710323944231462738521}{47788527625334045521979230178656288729578205} a^{7} - \frac{14782878450156154673745946580465465721457894}{47788527625334045521979230178656288729578205} a^{6} - \frac{1513864108307054579015764897013999922167866}{9557705525066809104395846035731257745915641} a^{5} - \frac{5678697616103912769073483368432764176274897}{47788527625334045521979230178656288729578205} a^{4} + \frac{16460159916078327567392539816487465470392089}{47788527625334045521979230178656288729578205} a^{3} - \frac{7717101841723579013017954345983082767448818}{47788527625334045521979230178656288729578205} a^{2} - \frac{1748336203443691059812310945424599901878}{9557705525066809104395846035731257745915641} a + \frac{3085861380915110712390677768261237532500512}{47788527625334045521979230178656288729578205}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80997899.5224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.3.19015.1, 10.6.46280988800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 3803 | Data not computed | ||||||