Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} - 8 x^{17} + 13 x^{16} + 140 x^{15} - 222 x^{14} - 623 x^{13} + 1749 x^{12} + 330 x^{11} - 5984 x^{10} + 5236 x^{9} + 7780 x^{8} - 12368 x^{7} + 2044 x^{6} - 5232 x^{5} + 9896 x^{4} - 2028 x^{3} + 560 x^{2} + 724 x + 212 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2707615342490215507082596007936=2^{14}\cdot 11^{8}\cdot 29\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{16} - \frac{1}{10} a^{15} + \frac{1}{10} a^{14} - \frac{1}{5} a^{13} + \frac{1}{10} a^{12} + \frac{2}{5} a^{11} + \frac{1}{10} a^{10} + \frac{3}{10} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{50} a^{18} + \frac{1}{25} a^{17} + \frac{11}{50} a^{16} + \frac{4}{25} a^{15} - \frac{2}{25} a^{14} + \frac{1}{5} a^{13} + \frac{6}{25} a^{12} + \frac{23}{50} a^{11} - \frac{9}{50} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{9}{50} a^{7} - \frac{17}{50} a^{6} - \frac{2}{5} a^{5} + \frac{3}{25} a^{4} - \frac{12}{25} a^{3} + \frac{9}{25} a^{2} - \frac{2}{5} a - \frac{4}{25}$, $\frac{1}{250893598589460173300075139084482500} a^{19} + \frac{260628567622571226261385501091283}{250893598589460173300075139084482500} a^{18} + \frac{5273611109204935989069865710228059}{125446799294730086650037569542241250} a^{17} + \frac{12135018090749773378022521798209627}{125446799294730086650037569542241250} a^{16} - \frac{923011102882517056235745185397851}{250893598589460173300075139084482500} a^{15} - \frac{4792293298256599469408222398424647}{125446799294730086650037569542241250} a^{14} - \frac{20007472052985405721918117004228109}{125446799294730086650037569542241250} a^{13} + \frac{2953675160365181692555623946728093}{50178719717892034660015027816896500} a^{12} - \frac{93335969938404986645506716268729941}{250893598589460173300075139084482500} a^{11} + \frac{47748005877986039131603418754539293}{125446799294730086650037569542241250} a^{10} + \frac{2771152958836650044610194528304297}{12544679929473008665003756954224125} a^{9} + \frac{50198575785583452869160303456125473}{125446799294730086650037569542241250} a^{8} - \frac{8399223997767594922010703361528139}{62723399647365043325018784771120625} a^{7} + \frac{17699919342719950059159034362730989}{125446799294730086650037569542241250} a^{6} - \frac{36081524685318141578284104737443477}{125446799294730086650037569542241250} a^{5} - \frac{2542486382523573857222197523642292}{62723399647365043325018784771120625} a^{4} - \frac{13841073573289508381508484432211079}{62723399647365043325018784771120625} a^{3} + \frac{24879962068418245071061665844748432}{62723399647365043325018784771120625} a^{2} - \frac{19304227263157707728299600312348172}{62723399647365043325018784771120625} a + \frac{15651579946544505745011783576177958}{62723399647365043325018784771120625}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10106817.0009 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.2.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.14.1 | $x^{12} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.8.1 | $x^{12} - 33 x^{9} + 363 x^{6} - 1331 x^{3} + 117128$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.12.8.1 | $x^{12} - 339 x^{9} + 38307 x^{6} - 1442897 x^{3} + 20380920125$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |