Normalized defining polynomial
\( x^{20} - 3 x^{19} + 54 x^{18} - 134 x^{17} + 1471 x^{16} - 3449 x^{15} + 27090 x^{14} - 62922 x^{13} + 366942 x^{12} - 806086 x^{11} + 3601118 x^{10} - 6995232 x^{9} + 24673492 x^{8} - 39678884 x^{7} + 113547748 x^{6} - 139838948 x^{5} + 333088280 x^{4} - 276077824 x^{3} + 565677856 x^{2} - 233337512 x + 435562168 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2704371500297649804173712000000000000=2^{16}\cdot 3^{10}\cdot 5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{3923998895179190410054154942878373334753080506548210522040974136} a^{19} + \frac{16777677703821201523839583132683960556472778445999363414385675}{980999723794797602513538735719593333688270126637052630510243534} a^{18} + \frac{11869547547860001001571791049043464984346850899173003553092435}{490499861897398801256769367859796666844135063318526315255121767} a^{17} + \frac{80713968518038119537964407374437434034977890199113524588331941}{1961999447589595205027077471439186667376540253274105261020487068} a^{16} + \frac{152459751389942902150543492566117991625632159576400592979955073}{3923998895179190410054154942878373334753080506548210522040974136} a^{15} - \frac{37790541461997067607737710212860680281918174785632601707024209}{3923998895179190410054154942878373334753080506548210522040974136} a^{14} - \frac{25901206501167253498063826717448818422562372748570461787134219}{980999723794797602513538735719593333688270126637052630510243534} a^{13} + \frac{400971907189360424395618474189330963130997450185928846076785291}{1961999447589595205027077471439186667376540253274105261020487068} a^{12} - \frac{411055147572254369886998275267622250946367510361589403032439105}{1961999447589595205027077471439186667376540253274105261020487068} a^{11} - \frac{930315656970260193634977248456230098588453237571487092641349877}{3923998895179190410054154942878373334753080506548210522040974136} a^{10} - \frac{382515415988900289875053683144302030380997634518506009611666325}{980999723794797602513538735719593333688270126637052630510243534} a^{9} - \frac{480083029744293106675781891152832931464121969893201679562593697}{1961999447589595205027077471439186667376540253274105261020487068} a^{8} - \frac{382834787425254064233239648784489342860337927281963990479772609}{980999723794797602513538735719593333688270126637052630510243534} a^{7} - \frac{565311837171835542165438900623589260629036294099158306662999807}{1961999447589595205027077471439186667376540253274105261020487068} a^{6} + \frac{70555261832011972295496302979453515787623380627527877085747431}{490499861897398801256769367859796666844135063318526315255121767} a^{5} + \frac{31499270117489020172302172149428270011888885358987900134523801}{490499861897398801256769367859796666844135063318526315255121767} a^{4} - \frac{208977840637117981324882258366646718472172425226341006860027522}{490499861897398801256769367859796666844135063318526315255121767} a^{3} + \frac{11714343822197714764820134425709557225327136599181297309328338}{490499861897398801256769367859796666844135063318526315255121767} a^{2} + \frac{73922569647631733496812481563014269899612155726582389210467447}{980999723794797602513538735719593333688270126637052630510243534} a - \frac{247739984376368673823231280186104774435323399627040304694087411}{980999723794797602513538735719593333688270126637052630510243534}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6648808169.565157 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.44217.1, 5.1.578000.2, 10.2.5679428000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||