Properties

Label 20.0.26941966215...6161.1
Degree $20$
Signature $[0, 10]$
Discriminant $19^{10}\cdot 41^{19}$
Root discriminant $148.43$
Ramified primes $19, 41$
Class number $4390362$ (GRH)
Class group $[3, 3, 3, 162606]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![24518981951, 7230594575, 10421568750, 2826052345, 259763990, 2299307442, 28194599, -12872436, 345259493, -68039548, 81794047, -8698080, 8563440, -479550, 465900, -13461, 13273, -187, 186, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 186*x^18 - 187*x^17 + 13273*x^16 - 13461*x^15 + 465900*x^14 - 479550*x^13 + 8563440*x^12 - 8698080*x^11 + 81794047*x^10 - 68039548*x^9 + 345259493*x^8 - 12872436*x^7 + 28194599*x^6 + 2299307442*x^5 + 259763990*x^4 + 2826052345*x^3 + 10421568750*x^2 + 7230594575*x + 24518981951)
 
gp: K = bnfinit(x^20 - x^19 + 186*x^18 - 187*x^17 + 13273*x^16 - 13461*x^15 + 465900*x^14 - 479550*x^13 + 8563440*x^12 - 8698080*x^11 + 81794047*x^10 - 68039548*x^9 + 345259493*x^8 - 12872436*x^7 + 28194599*x^6 + 2299307442*x^5 + 259763990*x^4 + 2826052345*x^3 + 10421568750*x^2 + 7230594575*x + 24518981951, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 186 x^{18} - 187 x^{17} + 13273 x^{16} - 13461 x^{15} + 465900 x^{14} - 479550 x^{13} + 8563440 x^{12} - 8698080 x^{11} + 81794047 x^{10} - 68039548 x^{9} + 345259493 x^{8} - 12872436 x^{7} + 28194599 x^{6} + 2299307442 x^{5} + 259763990 x^{4} + 2826052345 x^{3} + 10421568750 x^{2} + 7230594575 x + 24518981951 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(26941966215290889183236469097652013493116161=19^{10}\cdot 41^{19}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $148.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(779=19\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{779}(512,·)$, $\chi_{779}(1,·)$, $\chi_{779}(132,·)$, $\chi_{779}(590,·)$, $\chi_{779}(400,·)$, $\chi_{779}(531,·)$, $\chi_{779}(569,·)$, $\chi_{779}(664,·)$, $\chi_{779}(324,·)$, $\chi_{779}(666,·)$, $\chi_{779}(476,·)$, $\chi_{779}(286,·)$, $\chi_{779}(607,·)$, $\chi_{779}(740,·)$, $\chi_{779}(742,·)$, $\chi_{779}(360,·)$, $\chi_{779}(305,·)$, $\chi_{779}(759,·)$, $\chi_{779}(761,·)$, $\chi_{779}(702,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{166} a^{16} - \frac{9}{83} a^{15} + \frac{33}{166} a^{14} - \frac{15}{83} a^{13} + \frac{21}{83} a^{12} + \frac{27}{83} a^{11} - \frac{75}{166} a^{10} + \frac{69}{166} a^{9} - \frac{4}{83} a^{8} + \frac{77}{166} a^{7} + \frac{22}{83} a^{6} - \frac{32}{83} a^{5} + \frac{77}{166} a^{4} - \frac{1}{166} a^{3} - \frac{15}{83} a^{2} + \frac{11}{83} a + \frac{47}{166}$, $\frac{1}{166} a^{17} + \frac{41}{166} a^{15} + \frac{33}{83} a^{14} - \frac{10}{83} a^{12} + \frac{67}{166} a^{11} + \frac{47}{166} a^{10} + \frac{36}{83} a^{9} - \frac{67}{166} a^{8} - \frac{32}{83} a^{7} + \frac{32}{83} a^{6} - \frac{79}{166} a^{5} + \frac{57}{166} a^{4} - \frac{24}{83} a^{3} - \frac{10}{83} a^{2} - \frac{55}{166} a + \frac{8}{83}$, $\frac{1}{13285478} a^{18} + \frac{11635}{13285478} a^{17} - \frac{18112}{6642739} a^{16} - \frac{2608449}{13285478} a^{15} + \frac{3617249}{13285478} a^{14} - \frac{3017150}{6642739} a^{13} + \frac{5398671}{13285478} a^{12} - \frac{1370555}{6642739} a^{11} - \frac{103296}{6642739} a^{10} + \frac{1841861}{6642739} a^{9} + \frac{4595423}{13285478} a^{8} - \frac{649577}{13285478} a^{7} - \frac{2677431}{13285478} a^{6} + \frac{1029274}{6642739} a^{5} + \frac{2126804}{6642739} a^{4} + \frac{4438177}{13285478} a^{3} + \frac{5617735}{13285478} a^{2} - \frac{3932885}{13285478} a - \frac{1974463}{13285478}$, $\frac{1}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{19} - \frac{33323603277225547876775082399036432885285720294030850618712651112785997156397189624623}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{18} + \frac{1249332603375606801210488003776997133149508067517263572454361852477615876325417436719876807}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{17} - \frac{1881873323555614012896134450541631030035409903810978839705913014414162519442126650315882707}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{16} - \frac{261131672702682681000182425770297340768399644838081708677960063682077819008642937786134163305}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{15} - \frac{101336709870409798369787733637940934797092249038080068403730495989158269751665126087155513001}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{14} + \frac{518584837692644670690599722383566514539910456343110005396179558373642920759082710102491506421}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{13} - \frac{201876288475096232246460572322964533186484693967062439158365570251532611377619976092672022253}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{12} - \frac{132055814509950518084936272420503255343600025617697576009111395529829523926934154295254020811}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{11} - \frac{4263900071321703006701654172272316835492830793316492533362497772531970950352394643642251758}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{10} + \frac{299787227008501572018659135042144656671952681443670243790621867913277907531342174825258354863}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{9} + \frac{421218673065096690388370347302837208421273879802870788007456066199721585039772267581796893077}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{8} - \frac{34182779955745180300033173598550982520801443246607698935938659559705206172472201442252223969}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{7} + \frac{270687303474640564517189868201923872363185810430253591446366168765534701970840541578989061381}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{6} + \frac{90106430423293696903965900415024848965262625256679121029264395594873436463145245161275763648}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127} a^{5} + \frac{163334706574743260362327937190834879627508221798156006441768911456139384405638617803183705839}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{4} - \frac{109886612375451601362587797789521972551811091128101863650047033963785094315825280088579792157}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{3} + \frac{27525308032118696169354646706483771911659338489983590078623911255990002977710927747457003237}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a^{2} + \frac{112379394186935860567803561620531508896752581783562729424635375235913785545782233362639134809}{1100727289436683604739351056477011113576546908815116192840547052905279835636705708614057524254} a + \frac{151043333551141782594519406878028497703990094073170979835739192424146368792742048744311409679}{550363644718341802369675528238505556788273454407558096420273526452639917818352854307028762127}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}\times C_{162606}$, which has order $4390362$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5104264.636551031 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{41}) \), 4.0.24880481.1, 5.5.2825761.1, 10.10.327381934393961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ $20$ $20$ $20$ $20$ R ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
41Data not computed