Normalized defining polynomial
\( x^{20} - 2 x^{19} + 21 x^{18} + 3 x^{17} + 214 x^{16} - 170 x^{15} + 2576 x^{14} - 755 x^{13} + 13339 x^{12} + 19832 x^{11} + 149025 x^{10} + 275981 x^{9} + 581614 x^{8} + 755443 x^{7} + 883394 x^{6} + 1008224 x^{5} + 1010770 x^{4} + 873795 x^{3} + 491090 x^{2} + 490795 x + 536845 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26933460539932909539957367095947265625=5^{16}\cdot 11^{6}\cdot 71^{6}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{889496896486566767625047308795860070775575913284705313489619962947} a^{19} + \frac{262200103687757442978945657022466557235399604027052676005228681976}{889496896486566767625047308795860070775575913284705313489619962947} a^{18} - \frac{127430345502234265049465803387279005079572308206211270652840828613}{889496896486566767625047308795860070775575913284705313489619962947} a^{17} - \frac{197311199098459279173325192660057701323946484385019919575713457212}{889496896486566767625047308795860070775575913284705313489619962947} a^{16} - \frac{67491833926473670797411542561925676217573959291309480845747600221}{889496896486566767625047308795860070775575913284705313489619962947} a^{15} + \frac{321357730648198018602813788031755308072816198153703683091341615527}{889496896486566767625047308795860070775575913284705313489619962947} a^{14} - \frac{219981589228546891398502319410645425184032105120680871719077176898}{889496896486566767625047308795860070775575913284705313489619962947} a^{13} + \frac{182487917804326704136301671837385723158679444660206331211240529346}{889496896486566767625047308795860070775575913284705313489619962947} a^{12} - \frac{112300983010093052556109301054671909050807609208239726826665246387}{889496896486566767625047308795860070775575913284705313489619962947} a^{11} - \frac{139376639614164121473200550003782543060341641093771432556448538208}{889496896486566767625047308795860070775575913284705313489619962947} a^{10} + \frac{97351240897614789137003064564559796426664485790307786429032352288}{889496896486566767625047308795860070775575913284705313489619962947} a^{9} + \frac{384149935619354854541773027010199786687152816345077694990524790441}{889496896486566767625047308795860070775575913284705313489619962947} a^{8} - \frac{266025377203527948207387173523984854620934175508528591844132338633}{889496896486566767625047308795860070775575913284705313489619962947} a^{7} + \frac{87347023361206059052266054023384266360435704351092022791643170943}{889496896486566767625047308795860070775575913284705313489619962947} a^{6} + \frac{147690199130177006287962914984544940890420351456023391201630947387}{889496896486566767625047308795860070775575913284705313489619962947} a^{5} - \frac{1520280899438977844855178492922160367069714408188674513463114479}{30672306775398854056036114096408967957778479768438114258262757343} a^{4} + \frac{424290284007322971284009147964940506066502176391513603304207929890}{889496896486566767625047308795860070775575913284705313489619962947} a^{3} - \frac{180017023766633104350336467983337117723926946211123472961918138698}{889496896486566767625047308795860070775575913284705313489619962947} a^{2} - \frac{158099340679551019016864832973427419052477304635726418199896492830}{889496896486566767625047308795860070775575913284705313489619962947} a + \frac{245175014959310062044053884228210413184575605298338159649016778457}{889496896486566767625047308795860070775575913284705313489619962947}$
Class group and class number
$C_{1588}$, which has order $1588$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29932844.3449 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | $18{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.8.6.3 | $x^{8} - 11 x^{4} + 847$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.2 | $x^{4} - 71 x^{2} + 55451$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.8.0.1 | $x^{8} - 7 x + 13$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |