Normalized defining polynomial
\( x^{20} + 820 x^{18} + 243950 x^{16} + 33107500 x^{14} + 2274853225 x^{12} + 81706435080 x^{10} + 1515651542800 x^{8} + 14458216384000 x^{6} + 66066967040000 x^{4} + 116659093504000 x^{2} + 66103908761600 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2682089947307619115362844269019165039062500000000000000000000=2^{20}\cdot 5^{34}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1050.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4100=2^{2}\cdot 5^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4100}(1,·)$, $\chi_{4100}(901,·)$, $\chi_{4100}(3979,·)$, $\chi_{4100}(461,·)$, $\chi_{4100}(1679,·)$, $\chi_{4100}(1619,·)$, $\chi_{4100}(2739,·)$, $\chi_{4100}(3599,·)$, $\chi_{4100}(3421,·)$, $\chi_{4100}(159,·)$, $\chi_{4100}(3739,·)$, $\chi_{4100}(3219,·)$, $\chi_{4100}(2341,·)$, $\chi_{4100}(681,·)$, $\chi_{4100}(1261,·)$, $\chi_{4100}(1841,·)$, $\chi_{4100}(3699,·)$, $\chi_{4100}(3859,·)$, $\chi_{4100}(2681,·)$, $\chi_{4100}(3221,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{8} - \frac{1}{32} a^{6} + \frac{1}{64} a^{4} + \frac{1}{16} a^{2}$, $\frac{1}{128} a^{9} - \frac{1}{64} a^{7} + \frac{1}{128} a^{5} + \frac{1}{32} a^{3}$, $\frac{1}{3200} a^{10} + \frac{1}{320} a^{8} + \frac{1}{128} a^{6} - \frac{1}{8} a^{2} + \frac{1}{5}$, $\frac{1}{6400} a^{11} - \frac{3}{1280} a^{9} + \frac{3}{256} a^{7} + \frac{15}{256} a^{5} + \frac{15}{64} a^{3} + \frac{7}{20} a$, $\frac{1}{12800} a^{12} - \frac{1}{12800} a^{10} + \frac{3}{2560} a^{8} - \frac{19}{512} a^{6} - \frac{3}{128} a^{4} + \frac{7}{40} a^{2} + \frac{1}{5}$, $\frac{1}{1587200} a^{13} - \frac{37}{1587200} a^{11} + \frac{471}{317440} a^{9} - \frac{1487}{63488} a^{7} - \frac{97}{1984} a^{5} + \frac{4923}{19840} a^{3} + \frac{419}{1240} a$, $\frac{1}{73011200} a^{14} - \frac{57}{14602240} a^{12} - \frac{10293}{73011200} a^{10} - \frac{43891}{14602240} a^{8} - \frac{773}{15872} a^{6} + \frac{72193}{912640} a^{4} + \frac{304}{713} a^{2} + \frac{26}{115}$, $\frac{1}{73011200} a^{15} - \frac{9}{73011200} a^{13} + \frac{2311}{73011200} a^{11} + \frac{17657}{14602240} a^{9} + \frac{689}{31744} a^{7} + \frac{25503}{912640} a^{5} + \frac{16297}{228160} a^{3} - \frac{1057}{3565} a$, $\frac{1}{38257868800} a^{16} - \frac{1}{478223360} a^{14} - \frac{673207}{19128934400} a^{12} - \frac{49083}{478223360} a^{10} - \frac{3082563}{1530314752} a^{8} - \frac{19818809}{956446720} a^{6} - \frac{5310067}{95644672} a^{4} - \frac{12677487}{29888960} a^{2} + \frac{1428}{3013}$, $\frac{1}{306062950400} a^{17} - \frac{151}{76515737600} a^{15} - \frac{20041}{153031475200} a^{13} + \frac{1620131}{76515737600} a^{11} + \frac{50394773}{61212590080} a^{9} - \frac{32292629}{7651573760} a^{7} + \frac{150869253}{3825786880} a^{5} + \frac{37285389}{239111680} a^{3} - \frac{171111}{1868060} a$, $\frac{1}{169961975580906246146060386304000} a^{18} - \frac{61270234662726690499}{8498098779045312307303019315200} a^{16} + \frac{20624832841309832226603}{16996197558090624614606038630400} a^{14} - \frac{18104892181387653810450469}{1699619755809062461460603863040} a^{12} + \frac{3110950062228287847185194581}{33992395116181249229212077260800} a^{10} - \frac{12072386498524711199882829129}{4249049389522656153651509657600} a^{8} + \frac{1891044559836906554149938641}{424904938952265615365150965760} a^{6} - \frac{791381785443405358914839337}{26556558684516600960321935360} a^{4} + \frac{10001772520911340896578831}{165978491778228756002012096} a^{2} + \frac{135211241574264803251346}{418292570005616824601845}$, $\frac{1}{1359695804647249969168483090432000} a^{19} + \frac{49793175893029519153}{67984790232362498458424154521600} a^{17} + \frac{119249141414821346397579}{135969580464724996916848309043200} a^{15} - \frac{21065626072189447048310849}{67984790232362498458424154521600} a^{13} + \frac{17217355510896253360597917333}{271939160929449993833696618086400} a^{11} - \frac{110492157085595901673086892239}{33992395116181249229212077260800} a^{9} - \frac{11143611877252757174903726859}{679847902323624984584241545216} a^{7} - \frac{8639143672266303173930851}{829892458891143780010060480} a^{5} + \frac{1573576208600604937341293467}{13278279342258300480160967680} a^{3} - \frac{63771940977648580886922409}{207473114722785945002515120} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{15580820}$, which has order $31909519360$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 523576436698285.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.27568400.4, 5.5.1103812890625.4, 10.10.49954518797906646728515625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $5$ | 5.10.17.26 | $x^{10} - 10 x^{8} + 85$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.26 | $x^{10} - 10 x^{8} + 85$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| 41 | Data not computed | ||||||